Static Distal Lock Insertion Affects the Rates of Cephalomedullary Nail Breakage in Unstable Intertrochanteric Fractures

Disclosures

• Devices used in this study are approved by the FDA
Introduction

- Hip fractures in the elderly are expected to increase in incidence to 500,000 a year by 20401
- Intertrochanteric (IT) femur fractures represent roughly 50\% of all hip fractures2
- Unstable fracture patterns make up roughly 50\% of all IT fractures2
• Implants used to treat IT fractures include the sliding hip screw and cephalomedullary devices with variable lag screw design.
Introduction

• Intramedullary devices are biomechanically superior when treating unstable fracture patterns3,4
Introduction

- Increased compression leading to decrease varus collapse and less femoral neck shortening\(^5\)
- Minimized post op pain, shorter hospital stays, and earlier timed up and go\(^6-8\)
Introduction

• Nevertheless, nail breakage occurs with all implants
Purpose

- Report the incidence of nail breakage with the dual integrated screw system in unstable IT fracture patterns
- Determine if the placement of static or dynamic interlocks played a role in these failures
Patients and Methods

- Retrospective analysis from Jan 1, 2011 to Dec 31, 2016
- Identified all patients with complete medical charts, appropriate preoperative, intraoperative, and postoperative imaging
Patients and Methods

• Exclusion criteria:
 • Stable IT femur fractures
 • Ipsilateral femoral shaft or distal femur fractures
 • Pathological fractures
 • Fractures treated with a short CMN
Patients and Methods

Group: Femur, proximal end segment, trochanteric region, multifragmentary pertrochanteric, lateral wall incompetent (≤ 20.5 mm) fracture 31A2

Subgroups:
- With 1 intermediate fragment 31A2.2
- With 2 or more intermediate fragments 31A2.3

→ For more information about calculating the lateral wall thickness, please refer to the Appendix.

Group: Femur, proximal end segment, trochanteric region, intertrochanteric (reverse obliquity) fracture 31A3

Subgroups:
- Simple oblique fracture 31A3.1
- Simple transverse fracture 31A3.2
- Wedge or multifragmentary fracture 31A3.3

Copyright © 2017 by AO Foundation, Davos, Switzerland; Orthopaedic Trauma Association, IL, US
Patients and Methods

- Xrays were reviewed for:
 - Tip to apex distance
 - Lag screw position
 - Quality of the reduction
 - Neck shaft angle
 - Use of a proximal set screw
 - Use and type of distal interlocking screw
 - Nail breakage
 - Failure of the distal interlocking screw defined as screw breakage or backout
Patients and Methods

- Follow up was broken down into:
 - > 6 months
 - > 3 < 6 months
 - > 1 < 3 months
 - < 1 month
- Patients loss to follow up were excluded
- Patient demographics were reviewed for age, sex and comorbidites
Results

• Identified 989 IT femur fractures treated
• 496 unstable IT femur fractures
• 138 failed to follow up
• 358 fractures in 348 patients for review
• 241 OTA/AO 31A2 fracture patterns
• 117 OTA/AO 31A3 fracture patterns
Results

• Average age: 77 years-old (23 – 102 yo)
• 33.4% male; 66.6% female
• Average BMI: 24.4 kg/m2 (13.3- kg/m2 – 57.8 kg/m2)
• Diabetes: 69 (19.2%)
• Tobacco: 58 (16.2%)
Results

- Follow up:
 - 170 patients > 6 months
 - 72 patients > 3 < 6 months
 - 66 patients > 1 < 3 months
 - 50 patients < 1 month
- Median follow up: 20 weeks
- 47% followed up > 6 months
Table 1:

Case	Age	Gender	AO/OTA Classification	Tobacco	DM	ASA	Set Screw	Distal interlock	TAD (mm)	NSA	Screw position calcar?	Outcome
1	55	Male	31A3	NO	NO	2	YES	Static	10.1	130°	NO	Nail fracture
2	74	Male	31A2	NO	YES	3	YES	Static	18.3	123°	NO	Nail fracture
3	77	Female	31A3	NO	NO	3	YES	Static	5.0	123°	YES	Nail fracture
4	81	Female	31A3	NO	NO	4	YES	Static	10.0	126°	NO	Nail fracture
5	76	Female	31A2	NO	NO	3	YES	Static	9.3	141°	YES	Nail fracture
6	76	Female	31A3	NO	NO	3	Yes	Static	17.0	124°	YES	Nail fracture
7	57	Female	31A2	NO	NO	2	Yes	Static	10.6	126°	NO	Nail fracture

7/358 (2%) nail breakage, all at the interface between the proximal lag screw and the nail

Results
Results

• Median time to nail breakage: 9 weeks
• All with proximal set screw, statically placed distal interlocks and visible fracture gap in the subtrochanteric region
• No mention if traction was release prior to placing distal interlocking screws
Results

- Multifragmentary IT with gapping below the screws
Results

• Stational distal interlocks
Results

- Nail breakage at 16 weeks
Results

• 14 constructs locked dynamically or left unlocked and all healed
• 35 distal interlocks failed
 • 17 fractured, 14/17 healed
 • 18 backed out, 18/18 healed
Results

- OTA/AO 31A2.3 fracture with gapping below the screw
Results

- Static distal interlocks
Results

• 3 year follow up with fracture of the distal interlock and shortening of the nail
Results

- 3 year follow up with visible healing proximally
Conclusion

- Overall nail breakage rate was 2%
- Majority of unstable IT fractures healed despite distal interlocking configuration
- All failures occurred with constructs locked proximally and statically locked distally with fracture gapping in the subtrochanteric region
- Our recommendations are to release traction prior to placing the distal interlocks and placing the distal interlock dynamically if gapping is still noted below the dual integrated screws
References

References

References