Criteria Based Return to Sport Testing is Associated with Lower Recurrence Rates Following Arthroscopic Bankart Repair

Mauricio Drummond, MD
Adam Popchak, PT, PhD, SCS
Kevin Wilson, MD
Gillian Kane, BS
Albert Lin, MD (Faculty Advisor)
I (and/or my co-authors) have something to disclose.

Detailed disclosure information is available via:

“My Academy” app;

or

AAOS Orthopaedic Disclosure Program on the AAOS website at http://www.aaos.org/disclosure
Introduction

• Traditionally return to sports (RTS) following shoulder stabilization surgery is subjective:
 - strength
 - range of motion
 - arbitrary passage of time (5-6 mo)
• Recurrence rate in literature 3-23%
• RTS criteria-based testing popularized for ACL and decreases ACL graft failure¹
Introduction

- Traditionally return to sports (RTS) following shoulder stabilization surgery is subjective:
 - strength
 - range of motion
 - arbitrary passage of time (5-6 mo)
- Recurrence rate in literature 3-23%
- RTS criteria-based testing popularized for ACL and decreases ACL graft failure¹
- Previous work describing our criteria based RTS test at 6mos after Bankart surgery:
 - 88% failed at least 1 component
 - suggests objective assessment of strength may be needed to detect potential deficits
 - may influence recurrence rates after return to sports²
• **PURPOSE:** Evaluate the impact of criteria based RTS test on recurrence rate after arthroscopic Bankart surgery
Purpose/Hypothesis

• **PURPOSE:** Evaluate the impact of criteria based RTS test on recurrence rate after arthroscopic Bankart surgery

• **HYPOTHESIS:** Athletes who undergo a criteria based RTS test to guide return to play will have a lower recurrence rate when compared to those who did not.
Methods

• Retrospective review, case-controlled study
• Minimum 1 year follow up
• **Case group** - 36 competitive high school and college athletes Arthroscopic anterior labral repair 2016-2018
 – No bone loss >13.5%, no MDI, no off-track
 – Completed postoperative rehabilitation
 – Completed RTS battery at 6 months
• **Control group** - 36 matched consecutive historical cases 2014-2015
 – Did not undergo criteria based RTS testing

<table>
<thead>
<tr>
<th>PHASED REHABILITATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase 1 (6 weeks)</td>
</tr>
<tr>
<td>– Sling x 4 weeks (No AROM)</td>
</tr>
<tr>
<td>– Scapular posture/mobility</td>
</tr>
<tr>
<td>– RC Isometrics at 4 weeks</td>
</tr>
<tr>
<td>Phase 2 (6-12 weeks)</td>
</tr>
<tr>
<td>– Gradual increase ROM to goal</td>
</tr>
<tr>
<td>– Submaximal tissue loading</td>
</tr>
<tr>
<td>– Dynamic stabilization and posture</td>
</tr>
<tr>
<td>– Neuromuscular control</td>
</tr>
<tr>
<td>Phase 3 (12-24 weeks)</td>
</tr>
<tr>
<td>– Normalization of strength and NM control</td>
</tr>
<tr>
<td>– Develop power for higher level activities (sport specific)</td>
</tr>
<tr>
<td>– Achieve dynamic stability</td>
</tr>
</tbody>
</table>

RETURN TO SPORT TESTING (6 MOS)
Methods

• Retrospective review, case-controlled study
• Minimum 1 year follow up
• **Case group** - 36 competitive high school and college athletes Arthroscopic anterior labral repair 2016-2018
 – No bone loss >13.5%, no MDI, no off-track
 – Completed postoperative rehabilitation
 – Completed RTS battery at 6 months
• **Control group** - 36 matched consecutive historical cases 2014-2015
 – Did not undergo criteria based RTS testing
• Recurrence defined as symptomatic instability requiring revision stabilization
• Statistical analysis included descriptive statistics, independent t test, ANOVA to compare means, odds ratio to assess probability
• Statistical significance p<0.05

PHASED REHABILITATION

Phase 1 (6 weeks)
 – Sling x 4 weeks (No AROM)
 – Scapular posture/mobility
 – RC Isometrics at 4 weeks

Phase 2 (6-12 weeks)
 – Gradual increase ROM to goal
 – Submaximal tissue loading
 – Dynamic stabilization and posture
 – Neuromuscular control

Phase 3 (12-24 weeks)
 – Normalization of strength and NM control
 – Develop power for higher level activities (sport specific)
 – Achieve dynamic stability

RETURN TO SPORT TESTING (6 MOS)
Methods: Strength Testing

• Goal = 90% contralateral

• Isokinetic IR and ER
 – Biodex Peak Torque
 » 60° per second
 » 180° per second

• External Rotation Endurance Test
 – External Rotation (ER) Reps to failure with 5% body weight
 » 0º Abduction (sidelying)
 » 90º Abduction (prone)

Reinold et al. (2004).
Methods: Functional Testing

• **#1 Closed Kinetic Chain Upper Extremity (CKCUES) Test**
 - Alternating touch in Push-up position
 - Average of 3 rounds of 15 sec
 - 45 sec break
 - Scored in touches/15 seconds
 - 1 touch = Move one hand from the floor to contralateral hand and back
 - **PASS = >/= 21 touches**
 - Reference value
 - 75% active female
 - 85% active male

• **#2 Unilateral Seated Shot Put Test**
 - Distance of throw for 6-lb medicine ball
 - Back flat against wall, knees 90 degrees
 - Mean distance of 3 trials, 30 second rest
 - **PASS = 90% distance of nonop extremity**
 - 10% adjustment for dominance
Methods: Functional Testing

- **#1 Closed Kinetic Chain Upper Extremity (CKCUES) Test**
 - Alternating touch in Push-up position
 - Average of 3 rounds of 15 sec
 - 45 sec break
 - Scored in touches/15 seconds
 - 1 touch = Move one hand from the floor to contralateral hand and back
 - **PASS = >/= 21 touches**
 - Reference value
 - 75% active female
 - 85% active male

- **#2 Unilateral Seated Shot Put Test**
 - Distance of throw for 6-lb medicine ball
 - Back flat against wall, knees 90 degrees
 - Mean distance of 3 trials, 30 second rest
 - **PASS = 90% distance of nonop extremity**
 - 10% adjustment for dominance
 - Patients who completed failed the test, redid test (2)
 - Patient who were able to complete test, but failed partially, continue specific PT for 4 weeks before RTS

Results - Demographics

<table>
<thead>
<tr>
<th></th>
<th>RTS Case Group</th>
<th>Control Group</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>20(14-29)</td>
<td>19(15-36)</td>
<td>0.15</td>
</tr>
<tr>
<td>Male</td>
<td>30/36(83%)</td>
<td>23/36(64%)</td>
<td>0.11</td>
</tr>
<tr>
<td>Dominant side involved</td>
<td>19/36(52%)</td>
<td>18/30(60%)</td>
<td>0.56</td>
</tr>
<tr>
<td>Isolated anterior labrum</td>
<td>26/36(72%)</td>
<td>26/36(72%)</td>
<td>1.0</td>
</tr>
<tr>
<td>Anterior + Posterior labrum</td>
<td>10/36(28%)</td>
<td>10/36(28%)</td>
<td>1.0</td>
</tr>
<tr>
<td>>3 anchors</td>
<td>36(100%)</td>
<td>36(100%)</td>
<td>1.0</td>
</tr>
<tr>
<td>Sports</td>
<td></td>
<td>0.78</td>
<td></td>
</tr>
<tr>
<td>Football</td>
<td>16</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Basketball</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Wrestling</td>
<td>2</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Soccer</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Hockey</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Lacrosse</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Others</td>
<td>9</td>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>
Results – Recurrence Rate

<table>
<thead>
<tr>
<th></th>
<th>RTS Case Group</th>
<th>Control Group</th>
<th>P-value</th>
<th>Odds Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recurrence rate</td>
<td>2/36 (5%)</td>
<td>8/36 (22%)</td>
<td>0.04</td>
<td>4.85</td>
</tr>
<tr>
<td>Time from Surgery (months)</td>
<td>12</td>
<td>13.6</td>
<td>0.43</td>
<td></td>
</tr>
<tr>
<td>Sports</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Football</td>
<td>2</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wrestling</td>
<td>-</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basketball</td>
<td>-</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment</td>
<td>Latarjet (2)</td>
<td>Arthroscopic Bankart (6) Open Bankart (1) Latarjet (1)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Discussion

- **Discussion:**
 - Patients who underwent a criteria based RTS test before RTS had a significant, more than 4x lower rate of recurrence when compared with those who did not.
Discussion:

- Patients who underwent a criteria based RTS test before RTS had a significant, more than 4x lower rate of recurrence when compared with those who did not.
- Loss of isokinetic muscle strength has been shown to be a risk factor for recurrent instability in the preoperative state\(^5,6\)
- This suggests proper restoration of dynamic stabilizers might be just as important as other risk factors.
Discussion:

- Patients who underwent a criteria based RTS test before RTS had a **significant**, more than 4x lower rate of **recurrence** when compared with those who did not.
- Loss of isokinetic muscle strength has been shown to be a risk factor for recurrent instability in the preoperative state\(^5,6\)
- This suggests proper restoration of dynamic stabilizers might be just as important as other risk factors.
- Objective measurements may unravel hidden strength and functional deficits that can guide rehabilitation and decision making for RTS.
- Criteria based RTS testing is a **modifiable factor** in the episode of care.
Limitations

- Prospective randomized control group was not readily available
- Retrospective study design – PROs and determination of return to play at preinjury level not available
• Athletes who did not undergo criteria based RTS testing following arthroscopic shoulder stabilization had 4.85 times increased likelihood of developing recurrent instability after return to sports.
Conclusion

• Athletes who did not undergo criteria based RTS testing following arthroscopic shoulder stabilization had 4.85 times increased likelihood of developing recurrent instability after return to sports.

• Criteria based RTS testing can detect hidden deficits that may guide rehabilitation and help to lower recurrence rates.

2. Return to Sport Testing at 6 Months after Arthroscopic Shoulder Stabilization Reveals Residual Strength and Functional Deficits; Kevin Wilson, MD, Ryan T. Li, MD, Gillian Kane, BS, Adam Popchak, PT, PhD, SCS, Albert Lin, MD. Accepted for publication in JSES.

Thank you