UCL Reconstruction Variations

Christopher S. Ahmad, MD
Professor Orthopedic Surgery
Chief Sports Medicine
Head Team Physician
New York Yankees
New York City Football Club
- NewYork-Presbyterian

Evolutionary Pressure

Complexity of the Surgery
Extensive Dissection
Flexor Mass Mobilization
Research: Anatomical and biomechanical studies
Isometry, Fixation strength
Surgeon Skill
Innovation, Marketing

1. Scope vs No Scope
Arthroscopy
• Diagnose UCL – assess laxity
• Address additional pathology
 – Loose bodies
 – Impingement
 – Synovitis
Arthroscopy
Summary Scope
• Case by case basis
• Additional info on laxity of ligament
• Can treat posterior impingement

2. Approach
Approach
• Flexor takedown
• Flexor elevate
• Flexor split

Surgical Approach
RTP / RTS
• No differences

Subsequent forearm injuries
• Muscle Split/Docking and Muscle elevate/Modified Jobe techniques (5.3% vs. 5.2%, respectively

2018 MLB HITS data

3. Ulnar Nerve
Ulnar Nerve

Factors
• Surgeon preference
• Neuritis/Neuropathy
• Subluxation
 – 16% of pop ulnar nerve instability
• Anconeus Epitrochlearis
17 articles (n = 1518 cases)
- 12% postoperative ulnar neuropathy
- Neuropathy
 - Ulnar nerve transposition 16.1%
 - No handling of the ulnar nerve 3.9%

Ulnar nerve transposition
- More likely the Modified Jobe technique than the Docking
- No correlation with RTP RTS
 - Multivariate analysis stratified by technique, graft type, age, pitching role, throwing side dominance, and level of play

2018 MLB HITS data

Ulnar Nerve

Summary
- Controversial
- Lets ask experts during the panel
Graft Source

- Palmaris – 20% absent
- Gracilus – larger (ligament ossified, revision)
- Allograft – healing issues
- Toe extensor
- Ipsilateral or contralateral

Do Major League Baseball Team Physicians Harvest the Semitendinosus From the Drive Leg or Landing Leg When Performing Ulnar Collateral Ligament Reconstruction on Elite Baseball Pitchers?

- 52 MLB team orthopaedic surgeons
- 77% MLB team physicians completed the survey
Graft Source

Summary
• Controversial
• Lets ask the experts

• Tunnel creation
• Location and size
Ulnar Bone Bridge

AAOS Advances Reconstruction: Elbow

Authors
- **Humeral**
 - Technique
 - Tunnel diameter
 - Tunnel length
 - Exit tunnel size
- **Ulnar**
 - Tunnel technique
 - Tunnel size
 - Bridge size

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Technique</th>
<th>Humeral Tunnel Diameter</th>
<th>Humeral Tunnel Length</th>
<th>Humeral Exit Tunnel Size</th>
<th>Ulnar Tunnel Diameter</th>
<th>Ulnar Bridge Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ahmad CS, ElAttrache NS</td>
<td>Jobe</td>
<td>4.5 mm</td>
<td>not addressed</td>
<td>3.2 mm</td>
<td>10 mm</td>
<td>Jobe 3.2 mm</td>
</tr>
<tr>
<td>Docking</td>
<td>4 mm</td>
<td>15 mm</td>
<td>“small”</td>
<td>5-10 mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DANE TJ</td>
<td>4.5 mm</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Technique</th>
<th>Humeral Tunnel Diameter</th>
<th>Humeral Tunnel Length</th>
<th>Humeral Exit Tunnel Size</th>
<th>Ulnar Tunnel Diameter</th>
<th>Ulnar Bridge Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ahmad CS, Mirzayan R, ElAttrache NS</td>
<td>Jobe</td>
<td>4.5 mm</td>
<td>not addressed</td>
<td>3.2 mm</td>
<td>10 mm</td>
<td>Jobe 3.2 mm</td>
</tr>
<tr>
<td>Docking</td>
<td>4 mm</td>
<td>15 mm</td>
<td>“small”</td>
<td>5-10 mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DANE TJ</td>
<td>4.5 mm</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Technique</th>
<th>Humeral Tunnel Diameter</th>
<th>Humeral Tunnel Length</th>
<th>Humeral Exit Tunnel Size</th>
<th>Ulnar Tunnel Diameter</th>
<th>Ulnar Bridge Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Azar FM, Andrews JR, Wilk KE, Groh D</td>
<td>Jobe converging</td>
<td>3.2 mm</td>
<td>not addressed</td>
<td>3.2 mm</td>
<td></td>
<td>Jobe 3.2 mm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Technique</th>
<th>Humeral Tunnel Diameter</th>
<th>Humeral Tunnel Length</th>
<th>Humeral Exit Tunnel Size</th>
<th>Ulnar Tunnel Diameter</th>
<th>Ulnar Bridge Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conway JE</td>
<td>Docking</td>
<td>4.5 mm</td>
<td>not addressed</td>
<td>2.7 mm</td>
<td>5-8 mm</td>
<td>DANE TJ 4.75-6.0 mm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Technique</th>
<th>Humeral Tunnel Diameter</th>
<th>Humeral Tunnel Length</th>
<th>Humeral Exit Tunnel Size</th>
<th>Ulnar Tunnel Diameter</th>
<th>Ulnar Bridge Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dines JS, ElAttrache NS, Conway JE, Smith W, Ahmad CS</td>
<td>Docking</td>
<td>4.5 mm</td>
<td>not addressed</td>
<td>2.7 mm</td>
<td>5 mm</td>
<td>DANE TJ not addressed</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Technique</th>
<th>Humeral Tunnel Diameter</th>
<th>Humeral Tunnel Length</th>
<th>Humeral Exit Tunnel Size</th>
<th>Ulnar Tunnel Diameter</th>
<th>Ulnar Bridge Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dodson CC, Thomas A, Dines JS, Nho SJ, Williams RJ 3rd, Altchek DW</td>
<td>Docking</td>
<td>4 mm</td>
<td>not addressed</td>
<td>1.5 mm</td>
<td>5-10 mm</td>
<td>Jobe 3 mm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Technique</th>
<th>Humeral Tunnel Diameter</th>
<th>Humeral Tunnel Length</th>
<th>Humeral Exit Tunnel Size</th>
<th>Ulnar Tunnel Diameter</th>
<th>Ulnar Bridge Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>ElAttrache NS, Ahmad CS</td>
<td>Jobe</td>
<td>4.5 mm</td>
<td>not addressed</td>
<td>3.2 mm</td>
<td>10 mm</td>
<td>Jobe 3.2 mm</td>
</tr>
<tr>
<td>Docking</td>
<td>4 mm</td>
<td>15 mm</td>
<td>“small”</td>
<td>5-10 mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DANE TJ</td>
<td>4.5 mm</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Technique</th>
<th>Humeral Tunnel Diameter</th>
<th>Humeral Tunnel Length</th>
<th>Humeral Exit Tunnel Size</th>
<th>Ulnar Tunnel Diameter</th>
<th>Ulnar Bridge Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emblom BA, Andrews JR, Dillman CJ, Escamilla RF</td>
<td>Jobe converging</td>
<td>3.6 mm</td>
<td>not addressed</td>
<td>3.6 mm</td>
<td>15 mm</td>
<td>Jobe 3.6 mm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Technique</th>
<th>Humeral Tunnel Diameter</th>
<th>Humeral Tunnel Length</th>
<th>Humeral Exit Tunnel Size</th>
<th>Ulnar Tunnel Diameter</th>
<th>Ulnar Bridge Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jobe FW, Stark H, Lombardo SJ</td>
<td>Jobe converging</td>
<td>3.2 mm</td>
<td>not addressed</td>
<td>3.2 mm</td>
<td>not addressed</td>
<td>Jobe 3.2 mm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Technique</th>
<th>Humeral Tunnel Diameter</th>
<th>Humeral Tunnel Length</th>
<th>Humeral Exit Tunnel Size</th>
<th>Ulnar Tunnel Diameter</th>
<th>Ulnar Bridge Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Koh JL, Schafer MF, Keuter G, Hsu JE</td>
<td>Docking</td>
<td>4 mm</td>
<td>15-17 mm</td>
<td>“small” dental burr</td>
<td>5 mm</td>
<td>Jobe 4 mm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Technique</th>
<th>Humeral Tunnel Diameter</th>
<th>Humeral Tunnel Length</th>
<th>Humeral Exit Tunnel Size</th>
<th>Ulnar Tunnel Diameter</th>
<th>Ulnar Bridge Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paletta GA Jr, Wright RW</td>
<td>Docking</td>
<td>4-5 mm</td>
<td>25 mm</td>
<td>2 mm</td>
<td>10 mm</td>
<td>Jobe 3 mm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Technique</th>
<th>Humeral Tunnel Diameter</th>
<th>Humeral Tunnel Length</th>
<th>Humeral Exit Tunnel Size</th>
<th>Ulnar Tunnel Diameter</th>
<th>Ulnar Bridge Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Petty DH, Andrews JR, Fleisig GS, Cain</td>
<td>Jobe converging</td>
<td>3.2 mm</td>
<td>not addressed</td>
<td>3.2 mm</td>
<td>not addressed</td>
<td>Jobe 3.2 mm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Technique</th>
<th>Humeral Tunnel Diameter</th>
<th>Humeral Tunnel Length</th>
<th>Humeral Exit Tunnel Size</th>
<th>Ulnar Tunnel Diameter</th>
<th>Ulnar Bridge Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rohrbough JT, Altchek DW, Hyman J, Williams RJ 3rd, Botts JD</td>
<td>Docking</td>
<td>4 mm</td>
<td>15 mm</td>
<td>“small”</td>
<td>5-10 mm</td>
<td>Jobe 3 mm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Technique</th>
<th>Humeral Tunnel Diameter</th>
<th>Humeral Tunnel Length</th>
<th>Humeral Exit Tunnel Size</th>
<th>Ulnar Tunnel Diameter</th>
<th>Ulnar Bridge Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thompson WH, Jobe FW, Yokum LA, Pink MM</td>
<td>Docking</td>
<td>4.5 mm</td>
<td>not addressed</td>
<td>3.5 mm</td>
<td>not addressed</td>
<td>Jobe 3.5 mm</td>
</tr>
</tbody>
</table>

Ulnar Bone Bridge

- Stress fractures through ulnar bone bridge

Paletta et al. AJSM 2006
Ulnar Tunnels – Jobe and Docking

Docking Technique

Graft Tensioning
Docking Technique

Why does tunnel length matter?

Short tunnel \rightarrow More sensitive to graft length, may "bottom out" before adequate tension

Short tunnel \rightarrow More sensitive to improper exit tunnel placement
Humeral Tunnels

- Maximum Central Humeral Tunnel Depth by Varied Angle in Sagittal Plane
- Tunnel Angulations

<table>
<thead>
<tr>
<th>Tunnel Depth (mm)</th>
<th>Tunnel Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>15º</td>
</tr>
<tr>
<td>20</td>
<td>30º</td>
</tr>
<tr>
<td>30</td>
<td>45º</td>
</tr>
<tr>
<td>40</td>
<td>60º</td>
</tr>
</tbody>
</table>

*p < .05

- Maximum Central Humeral Tunnel Depth by Varied Starting Point
- Tunnel Depth (mm)

<table>
<thead>
<tr>
<th>Tunnel Depth (mm)</th>
<th>Starting Point from Center of Medial Epicondyle</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0 mm</td>
</tr>
<tr>
<td>20</td>
<td>2 mm</td>
</tr>
<tr>
<td>30</td>
<td>4 mm</td>
</tr>
<tr>
<td>40</td>
<td>6 mm</td>
</tr>
</tbody>
</table>

*p < .05

Techniques

Instrumentation

MCL Reconstruction Techniques
Single Tunnel Cortical Button
• Strength
• Minimize bone tunnels
 – Bone deformity
 – Fractures
 – Prior tunnels

Technique Variations
• 21 yo college RHP
• Previous MCL recon 3 yrs prior with allograft
• Recurrent tear of graft

Technique Variations
MCL Reconstruction
Technique Variations
MCL Reconstruction
Technique Variations

Cortical Button

--

CASE

• 20 yo college pitcher undergoes UCL recon OSH
• First game back feels a pop and pain

--

CASE

New humeral single tunnel
Gracilus tendon
Button fixation

--
4 Strand Graft
UCL Variations

Summary
• Controversial
• Ask the experts

Thank you

Comparison of Outcomes Based on Graft Type and Tunnel Configuration for Primary Ulnar Collateral Ligament Reconstruction in Professional Baseball Pitchers
• 566 professional baseball pitchers who underwent UCL reconstruction between 2010 and 2014
- overall RTP was 79.9% and RSL was 71.2%.

- RTP rates were similar for the Docking vs. 29 Modified Jobe techniques (80.1% vs. 82.4%; p=0.537) and for the two primary autograft types (83.1% for palmaris vs. 80.7% for gracilis; p=0.584). The risk of subsequent elbow surgery was 10.5% for the Docking
 vs. 14.8% for the Modified Jobe Technique, respectively (p=0.203). Significant trends towards an increasing use of palmaris autograft (p=0.023) and the docking technique (p=0.006) were noted; MLB pitchers were more likely than MiLB pitchers in RTP (p=0.007) and RSL (p=0.017), but these remained significant after controlling for number of starts (OR 2.98; 95% CI 1.05 to 8.40; p=0.039) and forearm injuries (OR 5.69; 95% CI 2.24 to 14.40; p<0.001). No specific variables correlated with the risk for subsequent elbow or revision UCL surgery in the multivariate analysis. The use of concomitant ulnar nerve transposition did not affect outcomes.

- Subsequent forearm injuries rates were also similar for the Docking and Modified Jobe techniques (5.3% vs. 5.2%; p=0.999) and for the two primary autograft types (5.0% for palmaris longus vs. 6.7% for gracilis; p=0.506).

- Ultimately, 12.9% of patients required subsequent elbow surgery, and 4.9% of patients required revision.

- 185 UCL reconstruction.