Endoscopic Treatment of Chronic Exertional Compartment Syndrome

Paul A. Fagan, D.O.
Aurora Health Care – Neenah, Oshkosh & Fond du Lac, WI
Detroit Regional Sports Medicine Symposium, July 19, 2018

Disclosure

• I have no actual or potential conflict of interest in relation to this presentation.

Overview

• History
• Epidemiology
• Anatomy
• Pathophysiology
• Presentation / Diagnosis
• Diagnostic testing
• Treatment
• Summary / Questions

Image: https://www.idahoankleandfoot.com/chronic-exertional-compartment-syndrome
Overview

- Objectives
 - Add CECS to your differential
 - Develop an algorithm for diagnosis
 - Outline treatment approaches
 - Outline rehabilitation from surgical treatment of CECS

History

- 1881 – Volkmann
 - Describes ischemic contracture
- 1906 – Hildebrand
 - Related Volkmann’s ischemic contracture with elevated tissue pressure
- 1910-1912 – Wilson
 - Probably first description of CECS on Scott’s Antarctic Expedition
- 1914 – Murphy
 - Fasciotomy to relieve elevated compartment pressure
- 1945 – Horn
 - “March-gangrene” – first publication
- 1956 – Mavor
 - The anterior tibial syndrome
- 1967 – Seddon, Kelly, Whitesides
 - 4 compartments in lower leg
 - Necessary to address all compartments

Epidemiology

- Incidence
 - No statistics in general population
 - 0.49 cases per 1,000 person-years in a physically active military population
 - Waterman (AJSM 2013)
- Occurs in a variety of activities
 - Detmer (AJSM 1985)
 - Involved in sports (87%)
 - Running (69%)
Anatomy

• Multiple areas of occurrence
 – Lower leg, thigh, foot, forearm…
• Most common in lower leg: 95%
 – Barnes (BJSM 1997)
• Bilateral lower leg involvement in 82%
 – Detmer (AJSM 1985)

Rajasekaran (PM&R 2012)
 – CECS involves:
 • Anterior 40%-60%
 • Lateral 12%-35%
 • Superficial posterior 2%-20%
 • Deep posterior 32%-60%

Pathophysiology

• Etiology
 – Multiple theories - Lecoq (Ann Re Med Phys 2004)
 • Muscle hypertrophy
 • Noncompliant fascia
 • Decreased venous return
 • Muscular microtrauma
 • Myopathy
 – Increased intramuscular pressure causes transient neuromuscular ischemia during exercise
 • Styf (Compartment Syndromes 2004)
Pathophysiology

Etiology
- Predisposing factors - Anuar (Phys Sing 2006)
 - Leg length discrepancy
 - Varus or valgus malalignment
 - Poor muscle control
 - Inappropriate training (frequency/intensity)
 - Diminished strength & endurance

Presentation / Diagnosis

Pain
- Dull, aching, cramping, sense of pressure
- Reproducible
 - Usually at a certain, predictable time or distance
 - Usually cannot run through pain
- Crescendo - decrescendo
 - Pain resolves after activity cessation
 - 10-60 minutes (Anaur)

When severe, pain may occur at rest
- Pedowitz (AJSM 1990)

Neurologic symptoms
- Paresthesia / numbness
- Transient foot drop – “slapfoot”
Presentation / Diagnosis

• Differential - Vajapey (Phys SM 2017)
 – CECS
 – Medial tibial stress syndrome / stress fracture
 – Tendinitis / myositis
 – Radiculopathy / peripheral nerve entrapment
 – Venous thromboembolism
 – Popliteal artery entrapment syndrome
 – Arterial vascular disease / claudication
 – Sickle cell disease
 – Tumor

Diagnostic Testing

• X-rays

• Nuclear medicine bone scan
Diagnostic Testing

• MRI

Diagnostic Testing

• Electromyogram / Nerve Conduction Study
 – For those with persistent neurologic symptoms

Diagnostic Testing

• Near-infrared spectroscopy
Diagnostic Testing

• Post-exercise needle manometry
 – When other causes ruled out

<table>
<thead>
<tr>
<th>Time</th>
<th>Pressure Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before exercise</td>
<td>>15 mm Hg</td>
</tr>
<tr>
<td>1 min after exercise</td>
<td>>30 mm Hg</td>
</tr>
<tr>
<td>5 min after exercise</td>
<td>>20 mm Hg</td>
</tr>
</tbody>
</table>

Treatment

• Non-operative management
 – Cessation of activities
 – Physical therapy - gait training
 • Transition to forefoot running
 – Significant decrease in post-run compartment pressures
 – Significant increase in running distance
 – Massage
 – Orthotics
 – Botulinum toxin A (Isner-Horobeti – AJSM 2013)
Treatment

• Open fasciotomy
• Percutaneous fasciotomy
• Endoscopic-assisted fasciotomy
• Other techniques
 – Ultrasound-guided
 – Thermal

Fasciotomy is gold standard
• Campano (Arthroscopy 2016) – systematic review
 – 68% overall success
 – Satisfaction rate 84%
 – Return to previous or full activity 75%
 – Symptom recurrence 0% to 44.7%
 – Reoperation 0% to 19%
 – Overall complication rate 13%
• Packer (AJSM 2013)
 – Compared non-operative to operative management
 – Satisfactory outcomes in 41% vs. 81%

Treatment - Open

• Open fasciotomy
 – Anterior & lateral compartments
 • Identify / protect superficial peroneal nerve

Images: Vajapey – Phys SM 2017
Treatment - Open

• Open fasciotomy
 – Posterior release
 • Split fascia of superficial and deep compartments
 • Avoid saphenous NV bundle

Image: Vajapey – Phys SM 2017

Treatment - Open

• Open fasciotomy
 – Failure of open surgical treatment
 • Schepsis (AJSM 2005)
 – 18 patients with failure after open fasciotomy
 » 60% localized fibrosis / constriction
 » 40% recurrence of entire compartment

Image: DeLee & Drez

Treatment – Minimally Invasive

• Minimally invasive / percutaneous
 – Small incision, done essentially blind
 – Most common complication: superficial peroneal nerve injury
 • Finestone (FAI 2014)
 – 3/36 patients with nerve injury
 – One reoperation
 • Drexler (AOTS 2017)
 – 4/54 patients with nerve injury
 – 8 with recurrence of symptoms

Image: Finestone & Drex
Treatment

- Hutchenson (AJSM 2003)
 - Cadaveric study of endoscopic vs. mini-open
 - Endoscopic had lower rate of SPN injury
 - Both had high rates of saphenous vein injury

Treatment - Endoscopic

- Lohrer (Arch Orthop Trauma Surg 2007)
 - 19 deep posterior, 16 anterior, 3 lateral in 17 athletes
 - No complications in anterior & lateral
 - Deep posterior
 - Hemorrhage in 2 patients
 - Required conversion to open
 - Recommend against endoscopic deep compartment release
 - 10/17 returned to previous level of activity

Treatment - Endoscopic

- Lui (Arthrosc Tech 2017)
 - Posterior compartments
 - Incision away from saphenous n./v.
 - No outcomes published
Treatment - Endoscopic

- Wittstein (AJSM 2010)
 - 8/9 returned to previous level of activity
 - 2 hematomas – resolved without intervention
- Lohrer (Sports Med Arthrosc 2016)
 - Systematic review of endoscopic vs. mini-open
 - No statistically significant difference

Treatment - Endoscopic

- Standard 30 degree scope
- 12” curved Metzenbaum scissors
- “Finger” retractors

Treatment - Endoscopic

- Incisions over raphe
 - At junction of prox/mid & mid/distal 1/3
Treatment - Endoscopic

• Superficial peroneal nerve
 – Identified in distal incision

Treatment - Endoscopic

• Small transverse incision in fascia
 – Work distal to level of superior retinaculum
 – Work as proximal as able to visualize
 – Move scope and instruments to proximal incision
 – Connect to distal fasciotomy
 – Work proximal
Treatment - Pearls

- Protect SPN – it’s in the fat
- Avoid perforating veins
- Ensure complete release

Treatment

- Closure
 - I do not use a drain
 - Monocryl & Dermabond
 - Toe-to groin ACE wrap

Rehabilitation

- Phase 1
 - Protect weightbearing with crutches
 - NWB for 3 days
 - WBAT to follow
 - Rest / Ice / Compression / Elevation
 - Stretching (AROM / AAROM)
Rehabilitation

• Phase 2 (2-3 weeks post-op)
 – Wound check in office, begin formal PT
 – Continue ROM of ankle & knee
 – Low-impact
 • Stationary bike, elliptical, Alter-G, hydrotherapy

• Phase 3 (4-6 weeks post-op)
 – Progress strength
 – Progress running
 – Increase duration of activity

• Phase 4 (by 8 weeks post-op)
 – Impact / plyometrics
 – Speed / agility drills
 – Sport-specific activities

• Phase 5 (~12 weeks post-op)
 – Return to all activities without restriction

Summary

• Objectives
 – Add CECS to your differential
 – Develop an algorithm for diagnosis
 – Outline treatment approaches
 – Outline rehabilitation from surgical treatment of CECS
Summary

- CECS exists!
- You can diagnose CECS
- You have the tools & skills to treat surgically if necessary

Sources
