POSTEROLATERAL CORNER KNEE INJURIES

Vishnu Potini, MD
Director of Sports Medicine
St. Francis Orthopaedic Institute, Columbus, GA
Team Doctor: Brookstone School

OUTLINE

• Case
• Background
• Anatomy
• Biomechanics
• Clinical/Radiographic Evaluation
• Treatment
• Case

CASE PRESENTATION

• 17yo male s/p bicycle crash into tree
• CC: L-knee pain, swelling
• PMH: None
• PSH: None
• Meds: None
• Allergy: NKDA
PHYSICAL EXAM

- Significant swelling L-knee
- Motor: 0/5 TA, 0/5 EHL
- Sensory: Decreased sensation over dorsum of foot
- Pulses: ABI: PT > 1, DP>1
- (+) Lachman’s, (+) anterior/posterior drawer
- (+) unstable to varus stress, (+) posterolateral drawer

X-RAYS

MRI
BACKGROUND

- Multi-ligamentous knee injuries account for less than 1% of all Orthopaedic injuries
- Isolated PLC injuries account for less than 2% of acute knee ligament injuries
- Injuries to the posterolateral corner are infrequent, often missed injuries
- These multi-ligamentous injuries are often the result of knee dislocations, which may present after spontaneous reduction

ANATOMY

- Four primary ligamentous stabilizers of the knee
 - Cruciate ligaments
 - ACL
 - PCL
 - Collateral ligaments
 - MCL
 - LCL
ANATOMY

- Posterolateral corner (arcuate ligamentous complex)
- Lateral collateral ligament
- Popliteus tendon
- Popliteofibular ligament
- Posterolateral capsule

ANATOMY

- **LCL**
 - Primary static restraint to varus opening of the knee
 - Femoral insertion proximal and posterior to epicondyle
 - Popliteofibular ligament
 - Course distally and laterally to insert on fibular styloid process

ANATOMY

- Popliteus tendon complex
 - Tendon and its ligamentous attachments to the fibula, meniscus, and tibia
 - Muscle originates on posteromedial proximal tibia
 - Tendon is intraarticular
 - Inserts on the popliteal saddle on the LFC
 - Anterior and distal to LCL by a mean distance of 18.5 mm
ANATOMY
- Additional structures providing stability
 - ITB
 - Blends into SHB to form anterolateral sling
 - LHB and SHB
 - Fabellofibular ligament
 - Lateral capsule
 - Lateral meniscus

BIOMECHANICS
- Structures of the PLC function to resist
 - Varus
 - External tibial rotation
 - Posterior tibial translation

ANATOMY
- Common peroneal nerve injury reported in up to 40% of knee dislocations
- Vascular injury in up to 40% of knee dislocations
- Ultra-low velocity knee dislocations in obese – higher incidence
- Approximately 10-15% amputation rate in patients with knee dislocations
CLINICAL EVALUATION

- **History/MOI**
 - Mechanism: Knee dislocation, impact to anteromedial knee
 - Posterolateral directed blow to the anteromedial tibia with resultant hyperextension
 - Direct blow to flexed knee
 - High-energy trauma
 - Varus-aligned limb
 - "Dislocated knee"

BACKGROUND

- Knee dislocation must always be considered
 - NV exam
 - Attention to popliteal vessels and peroneal n.
 - ABI and vascular states considered
 - Lateral dislocation or injury-peroneal nerve injury
 - LCL or PLC injury
 - Associated injuries
 - Evaluate limb alignment and gait

CLINICAL EXAM

- Thorough neurovascular exam
 - Ankle-brachial index (ABI)
 - Sensory/Motor exam
 - Ligamentous exam
 - Dial test
 - Posterolateral drawer test
 - Reverse pivot-shift
CLINICAL EVALUATION- POSTEROLATERAL CORNER

- Injuries are often combined
 - PCL most common
- Knee dislocation must always be considered
 - NV exam
 - Attention to popliteal vessels and peroneal n.
 - ABI and vascular studies considered
- Evaluate limb alignment and gait
 - Varus alignment
 - Varus or hyperextension thrust

IMAGING

- Plain films are often normal but may demonstrate an avulsion injury
 - Standing long-leg films in the setting of a chronic injury to rule out malalignment
 - Arthritic changes not uncommon in the chronic setting
- MRI is the imaging of choice
 - PLC injuries are rarely isolated so be mindful to examine for concomitant pathology
CLASSIFICATION

Isolated Posterior lateral Corner injury
- Grade I: 0-5mm of lateral opening and minimal ligament disruption
- Grade II: 5-10mm of lateral opening and moderate ligament disruption
- Grade III: >10mm of lateral opening and severe ligament disruption and no endpoint

SCHENK’S CLASSIFICATION
- KD 1 - ACL or PCL injury + collateral injury
- KD 2 - ACL/PCL only
- KD 3 - ACL/PCL + Medial or Lateral injury
- KD 4 - ACL/PCL + Medial and Lateral injury
- KD 5 - Multi-ligamentous injury with fracture

NONSURGICAL MANAGEMENT
- Crutches & hinged knee brace in extension for 4-6 weeks
- Progressive ROM, weightbearing, & strengthening
- Full return to activity at 3-4 months
- Grade I & II injuries
 - Good results with early mobilization
 - Minimal radiographic changes at 8 years
- Grade III
 - Poor functional outcomes, poor strength, persistent instability
 - ~50% had radiographic changes in medial & lateral compartments
 - Grade II & III treated surgically had improved varus stability & improved functional outcomes

TREATMENT
TREATMENT

- Acute surgical intervention provides more favorable results to late reconstruction
 - Direct repair with/without augmentation
 - Primary reconstruction
- Late reconstruction
 - Pericapsular scarring makes visualization of structures difficult
 - Chronic injury associated with capsular stretching

TIMING OF SURGERY

- Early (up to 3 weeks after injury)
 - Easier identification of structures if repairable
 - Less risk of arthrofibrosis
 - Less risk of infection
 - In cases with external fixation
- Late
 - Decreased swelling
 - Capsular healing if performing arthroscopy
 - Scarring / adhesions
 - Stretching of intact components

REPAIR VERSUS RECONSTRUCTION

- Common / classic teaching:
 - Repair if there is good tissue & can operate within 3 weeks
 - Repair ligament and tendon bony & soft tissue avulsions
 - Posterior avulsion of bone
 - LCL / PFL / Biceps femoris avulsions of bursal head
 - IT band avulsion off Gerdy's tubercle
 - Mid-1/3 lateral capsular ligament
 - Combination of repair & reconstruction when done within 3 weeks
REPAIR VERSUS RECONSTRUCTION
 - 57 knees (56 patients) with minimum 24-month follow-up
 - 44 (77%) with multiligamentous injury
 - Repair those with adequate tissue quality, done <3 weeks
 - Early motion rehabilitation protocol
 - Failure rate (p=.03)
 - Reconstruction 9% (2/22)
 - Repair 37% (13/35)
 - 11/13 sustained mid-substance tissue stretch / failure
 - Successful reconstruction in 14 pts with failed initial treatment
 - Overall reconstruction failure 5% (1/20)

REPAIR VERSUS RECONSTRUCTION
 - 28 knees included in study
 - 10 with repair then staged cruciate reconstruction
 - Average f/u 34 months
 - 18 simultaneous reconstructions (FCL/PLC & cruciates)
 - Average f/u 28 months
 - Failure rate (p=.04)
 - Repair 40% (4/10)
 - Reconstruction 6% (1/18)
 - Conclusion: reconstruction of PLC is more reliable than repair alone in the setting of MLI

TECHNIQUE – LARSEN
- Non-anatomic, fibular-based approach
 - Larsen MW,Monitor AR, Noorman CT J Knee Surg 2005
- Graft
 - Semi-tendinous autograft
- Fibular tunnel
 - Sagittal tunnel through fibular head
- Femoral fixation
 - Screw and washer between LCL & popliteal attachments
 - No issue with tunnel convergence
 - Graft passed through fibula, around screw in figure of 8, back through fibula, and around screw again
TECHNIQUE - LAPRADE

 - Graft: two-bailed, split Achilles and two 9 mm x 25 mm screws bone plugs
 - Reconstructs FCL, PFL, and popliteus tendon
 - Fibular tunnel
 - ACL drill guide to lateral fibular head at FCL attachment site
 - Exit point posteromedially at PFL attachment site
 - Drill guide pin, ream to 7 mm, and chamfer edges

GRAFT SELECTION

- Autograft
 - Pros
 - No risk of disease transmission
 - No significant additional cost
 - Well-documented healing, vascularization
 - May select ipsilateral or contralateral donor site
 - Cons
 - Donor site morbidity
 - Increased operative time

- Allograft
 - Pros
 - No donor site morbidity
 - Smaller / less incisions
 - Decreased operative time
 - Still available in revision cases
 - Cons
 - Cost
 - Availability
 - Infection risk
 - HIV 1 in 1,667,600 (Buck et al)
 - Bacterial / fungal – CDC recommends antibiotic / antifungal wash, specifically those effective against bacterial species
 - Biomechanical characteristics
APPROACH
• Posterolateral approach to knee
 • Supine, knee flexed to 90 degrees (relaxes peroneal nerve)
 • Longitudinal or slightly curved skin incision
 • May be in line with fibular head or about halfway between fibular head & Gerdy's tubercle
 • Incise deep fascia

APPROACH
• Identify long head of biceps femoris
 • ID peroneal nerve on posterior border and decompress from proximal to distal if performing neurolysis
 • Bluntly dissect anterior to lateral head of gastrocnemius

APPROACH
• Identify FCL (or remnant of FCL) on anterior portion of fibular head
 • Dissect proximally & posteriorly to identify femoral origin
 • Identify popliteus
 • Deep to FCL in hiatus
 • Identify PFL
 • Courses from posterior fibular head to popliteus tendon at approximately 30-degree angle
 • Bluntly dissect between peroneal nerve and biceps femoris to access posterolateral fibia
 • For reconstructions utilizing tibial tunnel
REHABILITATION

- Rehabilitation
 - Hinged knee brace in extension for 2 weeks with TTWB
 - Diminishes pull of gravity & hamstrings
 - Unlock for ROM, closed chain mini squats, quad sets, & SLR
 - PROM at 2 weeks or after ex-fix removal
 - Goal: 90 degrees of flexion by 6 weeks
 - Consider MUA at this point (~20% of their patients)
 - Discuss MUA prior to initial operative management
 - Progress ROM & discontinue brace

COMPLICATIONS

- Peroneal nerve injury
 - Assess preoperatively & document
 - 12-17% of cases
 - Prevent by identifying the course of the nerve in the operative field & protecting
- Persistent laxity
 - Perform thorough physical exam and ID concomitant injuries
 - Understand anatomy & perform anatomic reconstruction
- Tunnel convergence
 - 0 degrees in the coronal plane, max of 40 in the axial plane, and limit lateral tunnel depth to 25mm at the max

COMPLICATIONS

- Compartment syndrome
 - Fluid extravasation during arthroscopy
- Vascular injury
 - More so with concurrent PCL reconstruction
- Persistent knee pain
- Traumatic OJD
- HO
- Arthrosis – particularly if done acutely with ACL/PCL
- Malalignment - varus
CASE
- Planned for staged reconstruction of PLC and cruciates
- First stage
 - Exploration of common, superficial, deep peroneal nerves
 - Lateral-sided reconstruction
 - Primary repair of posterolateral corner capsule
 - LCL reconstruction
 - ORIF fibular head avulsion fracture
FOLLOW-UP

• Most recent follow-up (07/12/18); POD 17
• Incisions well-healed, staples removed
• 4/5 EHL, 4/5 TA
• Sensation improved in dorsum of foot, but still with paresthesia

SUMMARY

• Posterolateral corner knee injuries are uncommon in isolation, but in the setting of a multi-ligamentous knee injury are critical to diagnose and treat
• Pre-op: Thorough neurovascular exam due to possibility of nerve or vascular injury in knee dislocations
• Reconstruction or repair with augmentation preferred

SOURCES

SOURCES

