Treatment of Meniscal Tears
Angelo J. Colosimo, MD

Head Orthopaedic Surgeon University of Cincinnati Athletics
Director of Sports Medicine University of Cincinnati Medical Center
Associate Professor of UC College of Medicine
Medical Director Holmes Sports Medicine
Introduction

• Meniscus is integral in knee biomechanics
• Preservation is essential
• Meniscal surgery continues to evolve
Introduction

- Sutton (1897)
- King (1936)
- Fairbanks (1948)
 - Osteophyte formation
 - Flattening of marginal half of femoral surface
 - Joint space narrowing
Meniscal Function

- Shock absorption
- Force transmission
- Lubricates joint
- Nutrition to chondrocytes
- Provides stability
Meniscal Biomechanics

- ‘Hoop stress’
- Maintains shape and structure when axially loaded
- Increases surface area
- Decrease force per unit area
Meniscal Deficiency

- Decrease in surface area
- Increase force per unit area
- Decreases shock absorption
- Results in degeneration
Historical Treatment Options

1. Total meniscectomy
2. Partial meniscectomy
3. Meniscal repair
The bottom line is to preserve the meniscus whenever possible!
Meniscal Repair

- Preferred treatment
- Repairs do fail
Meniscal Repair Options

1. Inside-out repair
2. Outside-in repair
3. Inside-in repair
 - Meniscal arrows/darts
 - FastFix
Meniscal Repair

Need options for failed meniscal repair and/or previous meniscectomy
Case Presentation

- 25 y.o. female
- Soccer player
- 2 yrs. S/P complete medial meniscectomy

Arthroscopic findings
Meniscal Allografts
Meniscal Allografts

• First meniscal transplant 1984 by Milachowski (Germany)
• Multiple animal models have been evaluated
Goals of Meniscal Allograft

- Relieve pain and swelling
- Improve secondary stability
- Prevent progression of articular lesions and arthrosis
Meniscal Allograft Indications

- Symptomatic meniscal deficiency
- Intact primary stability
- Acceptable alignment
- Minimal articular disease
- Age less than ~ 40
Contraindications

- Chronic ligamentous instability
- Arthrosis > grade III
- Advancing age
- Severe malalignment
- Arthroplasty candidates
Meniscal Allograft Immunology

• “Immunologically privileged”
• Extracellular matrix
• HLA typing????
• Local rejection
• Knowledge limited
Graft Preservation

- Fresh
 - Most immunogenic, difficult logistics
- Fresh frozen
 - Reduced antigenicity
- Freeze dried (lyophilization)
 - Shrinkage reported
- Cryopreserved
- Cell viability
 - Host cells rapidly repopulate the transplanted cells in all types
Graft Sizing

- Essential for incorporation and restoration of function
- Ideally within 5% of anatomic
- Utilizes plain radiographs, MRI and CT scanning
- Lack of standardized sizing protocol
Meniscal Allograft

- Patient evaluation:
 - Plain radiographs
 - Alignment
 - Stability
 - MRI vs. staging arthroscopy
Surgical Technique
Surgical Techniques

1. Bone Plug techniques
 - Medial meniscal allograft
 - Double bone plug
 - Single bone plug

2. Keyhole technique
 - Lateral meniscal allograft

3. Non-bone plug techniques
Surgical Techniques

• Keys to success:
 1. Bed preparation
 2. Appropriate sizing
 3. Anatomic placement
 4. Secure fixation
 5. Joint stability
 6. Normal alignment
Surgical Technique

- Arthroscopically assisted
- Medial or lateral arthrotomy
- Concomitant ligament reconstruction
- Osteotomy
Bone Plug Surgical Technique

• Root identification
Bone Plug Surgical Technique

- Graft preparation
Bone Plug Surgical Technique

- Graft passage
Bone Plug Surgical Technique

• Final placement and graft fixation
Bone Plug Surgical Technique

Pre-Operatively

Post-Operatively
Keyhole Surgical Technique
Keyhole Surgical Technique

- Bed preparation
- Take down of tibial eminence
Keyhole Surgical Technique

- Graft preparation
Keyhole Surgical Technique

• Tunnel drilling
Keyhole Surgical Technique

- Passing of completed graft
Keyhole Surgical Technique

• Securing the graft
Keyhole Surgical Technique

Final allograft placement
Keyhole Surgical Technique

- Second look arthroscopy at 12 months
Rehabilitation
Rehabilitation

• Lack of standardized protocol
• Concomitant surgery
• Protective WB for 6 weeks
• Early limitations in flexion
• Return to activity at 3-6 months
• Full return at 6-9 months
Clinical Case #1

- Case: M.H. 26 y.o. male soccer player
- ~ 2 years S/P MM with MJLT and swelling
Clinical Case #1

• M.H. Medial meniscal allograft placed February, 2000
Clinical Case #1

- M.H. second look arthroscopy at 6 months
Court Comeback | ‘It’s my second chance’

Transplant repairs knee

Rare method uses human cartilage

By Michael D. Clark
The Cincinnati Enquirer

LIBERTY TWP. — Heather Marucci owes her comeback on the basketball court to a young stranger who died earlier this year.

The Lakota East High School student-athlete plays the game she loves again thanks to a rare operation that transplanted human cartilage into her damaged right knee.

Before practice this week, the 16-year-old talked about the gratitude she feels toward the unidentified donor she’ll never know.

“It’s my second chance... I can play again. If I could talk to the donor’s family the very first thing I’d say is ‘thank you,’ ” Heather said.

Despite a bulky knee brace, she moves with only occasional hesitation, eagerly joining in the physical play under the basket.

Two years ago, she was a freshmen standout for Lakota East’s Thunderhawks, not only making the varsity squad, but also leading the team in scoring.

But a knee injury left her in constant pain and sitting on the bench for her entire sophomore season. Three arthroscopic surgeries to repair her torn meniscal cartilage failed and she was facing a life of constant pain and no basketball.

Dr. Angelo Colosimo, director of sports medicine at the University of Cincinnati and team doctor for the Bengals determined in January that she was a prime candidate for an experimental meniscus transplant.

“Heather is pushing the envelope. There are only a handful of athletes in the country who have had this done and come back to playing athletics,” Dr. Colosimo said.

“She is a great athlete and a sweet girl... when we discussed this she looked at me and said she wanted to play again and asked what I could do,” he said.

Lakota East Girls Basketball Coach Cindy Felman marvels at both Heather’s medical miracle and her courage.

“She is a tremendous kid. She won’t quit. So many kids nowadays quit, but she won’t,” Ms. Felman said.

Heather is working her way back to full-time varsity play by playing half-games with the Thunderhawks’ junior varsity squad.

Heather said her initial reaction to having tissue from a dead person transplanted into her body was fear, but “I wasn’t disgusted by the idea.”

Because of organ donor laws, Dr. Colosimo did not identify or discuss the deceased donor with Heather, saying only it was someone of similar age.

“I don’t know who it was, but I wish I could thank them,” she said.

Heather Marucci practices with the Lakota East girls basketball team. A brace protects her recently repaired knee.
Clinical Outcomes

- Multiple variations make interpretation difficult:
 - Indications
 - Concomitant injury
 - Surgical techniques
 - Follow-up
 - Definition of success and failure
Clinical Outcomes Summary

• Many factors influence outcome:
 – Degree of arthrosis
 – Concomitant ACL reconstructions
 – Flattening of the femoral condyle
 – Malalignment
 – Bone plug fixation
Mechanism of Allograft Failure

• Technical failures:
 – Loss of fixation
 – Lack of bone plug incorporation
 – Poor graft placement
 – Size mismatch

• Biologic failures:
 – Absence of peripheral healing
 – Absence of re-vascularization
 – Lack of chondrocyte viability
 – Graft shrinkage
Future Directions

- Develop accepted standards for:
 - Patient and graft selection
 - Indications for surgery
 - Graft selection and sizing
 - Further immunologic studies
 - Rehabilitation protocol
 - Long term follow-up
 - Bioengineered/Synthetic
Summary

- Vital role of meniscus
- Meniscal allograft transplantation remains investigational
- Allograft reconstruction is technically feasible
- Long term success unknown
Thank You!