Elbow Trauma: What is the Evidence?

Michael D. McKee, MD, FRCS(C)
Professor and Chair, Department of Orthopaedic Surgery
University of Arizona, College of Medicine, Phoenix, AZ

1 (and/or my co-authors) have something to disclose.

Detailed disclosure information is available via:
“My Academy” app
or
AAOS Orthopaedic Disclosure Program on the AAOS website at
http://www.aaos.org/disclosure

A multicenter, prospective, randomized, controlled trial of open reduction—internal fixation versus total elbow arthroplasty for displaced intra-articular distal humeral fractures in elderly patients

Michael D. McKee, MD, FRCS(C)^2,^3,^6 Christian J.H. Veillette, MD, FRCS(C), MSc, BSc(Nurs)^6^4,^6^5; Jeremy L. Hall, MD, FRCS(C)^6,^7,^8; Emili H. Schertlitsch, MD, FRCS(C)^2,^6,^8,^9,^10; Lisa M. Wild, MHS NP^11; Robert McCormick, MD, FRCS(C)^12; Bernhard Perny, MD, FRCS(C)^13; Thomas Gootz, MD, FRCS(C)^12,^14; Hait Zamar, RN^15; Karyn Moore, RN^16; Scott Mandell, MD, FRCS(C)^12; Shérine Peitl, RN^17; Pierre Kay, MD, FRCS(C)^18; Irene Lesing, BScPT^19

1Division of Orthopaedics, St Michael’s Hospital and University of Toronto, Toronto, Ontario, Canada
2Division of Orthopaedics, Royal Columbian Hospital and University of British Columbia, New Westminster, British Columbia, Canada
3Division of Orthopaedics, University of British Columbia, Vancouver, British Columbia, Canada
4Division of Orthopaedics, University of British Columbia, Vancouver, British Columbia, Canada
5Division of Orthopaedics, University of British Columbia, Vancouver, British Columbia, Canada
6Division of Orthopaedics, University of British Columbia, Vancouver, British Columbia, Canada
7Division of Orthopaedics, University of British Columbia, Vancouver, British Columbia, Canada
8Division of Orthopaedics, University of British Columbia, Vancouver, British Columbia, Canada

Treatment Allocation

21 TEA → 21 ORIF
 1 death
 20 TEA → 20 ORIF
 5
 25 TEA → 15 ORIF

Results

TEA Group
- 25 patients
- 2 male, 23 female
- Mean age 78 years

ORIF Group
- 15 patients
- 3 male, 12 female
- Mean age 77 years

Baseline demographics the same (i.e. activity, mechanism, # type etc.)
Mayo Elbow Performance Score

![Graph showing Mayo Elbow Performance Score over time.](image)

Long term outcomes @ 9 yrs

- 21 TEA: 1 death, 20 TEA, 25 TEA
- 21 ORIF: 1 death, 20 ORIF, 15 ORIF

- 6 lost to long-term f/u (1 revised)
- 11 died No revisions
- 8 alive No revisions

Conclusions

- Non-operative treatment an option for some (demented, sick, low-demand)

- TEA significantly improved surgeon outcomes in one specific group (C3 #, female, age 78 yrs)

- TEA effective salvage in 25% of cases not amenable to ORIF

- Longevity of the TEA is good – 1 / 25 revised at mean f/u of 9 years
What to do with the ulnar nerve?

- Transpose?
- Leave in situ?

Simple Decompression vs Anterior Transposition of the Ulnar Nerve for Distal Humerus Fractures Treated with Plate Fixation: A Multi Centre Randomized Controlled Trial

Research Design

- Multi-centre randomized controlled trial
- 8 centres, 58 patients recruited

- Patients randomized to:
 1. Simple decompression
 2. Decompression + Anterior transposition
Results

- 31 Randomized to simple decompression
- 27 Randomized to decompression + anterior transposition
- Mean age 52 years (17-79 years), 60% female
- Pre-operative hand numbness in 25%
- No difference between the two groups with regards to age, gender, BMI, smoking, diabetes, injury characteristics, pre-operative neurologic dysfunction, time to operation, length of operation, or surgical approach.

Gabel & Amadio Ulnar Nerve Neuropathy Scores

No difference

DASH Scores

No difference
Nerve Conduction Studies

<table>
<thead>
<tr>
<th>Nerve conduction test results</th>
<th>All Patients N=45</th>
<th>Decompression N=22</th>
<th>Transposition N=23</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abnormal results</td>
<td>28 (62%)</td>
<td>12 (55%)</td>
<td>16 (70%)</td>
<td>0.30</td>
</tr>
<tr>
<td>Minor abnormality</td>
<td>15 (33%)</td>
<td>6 (27%)</td>
<td>9 (39%)</td>
<td>0.40</td>
</tr>
<tr>
<td>Severe abnormality</td>
<td>12 (27%)</td>
<td>6 (27%)</td>
<td>6 (26%)</td>
<td>0.59</td>
</tr>
<tr>
<td>Sensory only</td>
<td>10 (22%)</td>
<td>3 (14%)</td>
<td>7 (30%)</td>
<td>0.17</td>
</tr>
<tr>
<td>Sensory + Motor</td>
<td>16 (36%)</td>
<td>8 (36%)</td>
<td>8 (35%)</td>
<td>0.11</td>
</tr>
</tbody>
</table>

No difference

Conclusions

• Majority of patients develop ulnar nerve symptoms post-surgery
• Significant improvement by 1-year post-injury in neurologic symptoms and functional outcomes
• No difference with regards to ulnar nerve symptoms, functional outcomes or complications for patients treated with either simple decompression or anterior transposition
• Either strategy for managing the ulnar nerve is acceptable, and can be used at the discretion of the treating surgeon

Non-operative treatment of olecranon fractures in elderly: It is possible!

Andrew D Duckworth BSc(Hons), MBChB, MSc, FRCS(Ed) Tra&Orth, PhD
Edinburgh Orthopaedic Trauma, Royal Infirmary of Edinburgh, UK
University of Edinburgh
Nonoperative Management of Displaced Olecranon Fractures in Low-Demand Elderly Patients

Background

The aim of this study was to document both the short and long-term outcomes following primary nonoperative management of displaced fractures of the olecranon.

Methods

Nonoperative treatment was performed in 132 patients, all of whom had been managed nonoperatively for a displaced olecranon fracture over a threemonth period. Inclusion criteria included isolated fractures of the olecranon with - Normal displacement of the anterior surface. The primary short-term outcome measure was the Disabilities of the Arm, Shoulder and Hand (DASH) score.

Results

There were 103 patients with a mean age of 7.5 years (range: 2 to 3 years) in our study cohort. A successful outcome was defined as having no loss of reduction at the last follow-up visit. The mean follow-up time was 36 months (range: 1 to 24 months). Failure was defined as loss of reduction with subsequent arthroplasty (n = 8), secondary arthroplasty (n = 1), or certified death (n = 1). The DASH score was 4.7 points (range: 2 to 48) in patients with successful outcomes and 4.7 points (range: 2 to 48) in patients with treatment failure. A total of 42 patients (42%) achieved a DASH score that was 4.7 (range: 2 to 48) at the last follow-up visit.

Conclusions

Nonoperative management is a satisfactory alternative and long-term outcomes following the nonoperative management of isolated displaced olecranon fractures in elderly low-demand patients.

Level of Evidence: Therapeutic Level IV; Few instructions for further a comprehensive description of levels of evidence.

Outcome of Olecranon Surgery in the Elderly

- Risks factors for a poor outcome following operative treatment:
 - Increasing age
 - Fracture morphology

- Complications
 - Loss of reduction up to 50%

Methods – Criteria

<table>
<thead>
<tr>
<th>Inclusion criteria</th>
<th>Exclusion criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Age ≥75 years</td>
<td>1. Patients unable to give informed consent</td>
</tr>
<tr>
<td>2. Displaced fracture of the olecranon</td>
<td>2. Associated fractures to the coronoid, radial head and/or distal humerus</td>
</tr>
<tr>
<td>3. Minimal, moderate or severe fragmentation of the olecranon</td>
<td>3. Associated ligamentous injury, dislocation or subluxation</td>
</tr>
<tr>
<td>4. Within two weeks of olecranon fracture</td>
<td>4. Open fractures</td>
</tr>
<tr>
<td></td>
<td>5. Patients unable to comply with follow-up</td>
</tr>
</tbody>
</table>
Randomization

Results – Primary Outcome Measure

No significant difference at any time point
Results - Complications

- 13 complications in 10 patients
- Significantly higher rate in the operative arm

<table>
<thead>
<tr>
<th></th>
<th>Non-operation (n=7)</th>
<th>Operation (n=11)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total complications</td>
<td>1</td>
<td>9</td>
<td>0.013</td>
</tr>
<tr>
<td>Infection</td>
<td>1</td>
<td>1 (plate)</td>
<td>1.000</td>
</tr>
<tr>
<td>Loss of reduction</td>
<td>1</td>
<td>6 (all TBW)</td>
<td>0.151</td>
</tr>
<tr>
<td>Subsequent surgery</td>
<td>1</td>
<td>3</td>
<td>0.265</td>
</tr>
<tr>
<td>ROM</td>
<td>1</td>
<td>3 (2 plates, 1 TBAC)</td>
<td></td>
</tr>
<tr>
<td>Revision</td>
<td>4</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Results - Radiographic

- 9 patients radiological union – (all operative group)
- 9 functional non-union – (7/7 non-op, 2/11 op)

Conclusions

- Non-operative management of isolated displaced olecranon fractures in lower demand elderly patients
 - Growing body of evidence
 - Lower cost and complication rate
 - Caveat is the subtle unstable injury

- Future studies: alternative fixation methods?