Flexor Tendon Injury

Al Hess MD

History

- 131 AD – Galen - describes tendons and nerves as one. Advised against repair.
- 980 AD – Avicenna – describes tendon repair
- 1889 – Codivilla of Bologna – preserve the digital sheath
- 1918 – Bunnell – Advised against repair in “no man’s land”. Recommended grafting.
- 1967 – Kleinert – Primary repair in “no man’s land”
- 1967 – Bruner – Zigzag incision
- 1970 – Hunter - flexor tendon reconstruction
- 1970s – Kessler, Tajima – suture techniques

Anatomy

- **Flexor Digitorum Superficialis**
 - Origin: medial epicondyle, UCL, coronoid, proximal ulna and radius
 - Insertion: Middle Phalanx
 - Innervation: Median N.
- **Flexor Digitorum Profundus**
 - Origin: Prox ¾ of ulna and inteross membrane
 - Insertion: Proximal aspect of distal phalanx
 - Innervation: AIN = IF, MF; Ulnar N. = RF, SF
Anatomy

• Relationships
 – FDS: deep to pronator teres, FCR, PL, FCU
 – FDP: deep to FDS
 – FDS divides at mid forearm
 • Superficial: MF, RF
 • Deep: IF, SF
 – Carpal Tunnel: 9 tendons + median n.

Know the Zones
Anatomy

- Flexor Sheath
 - 5 Annular, 3 Cruciate
 - Affords efficiency, gliding, protection
- FDS divides within A1
- Rotates around and dorsal to FDP
- Reunites at Camper’s chiasma
- Separates again and inserts on middle phalanx

Tendon Healing

- 3 Phases
 - Inflammatory Phase: 48 to 72 hours
 - Fibroblastic: 5 days to 4 weeks
 - Remodelling: up to ~4 months
- 2 Mechanisms
 - Extrinsic
 - Scar and adhesions
 - Intrinsic
 - Healing within the tendon
 - Fewer adhesions
Tendon Nutrition

Tendon Healing

• Adhesion Formation
 – Direct tendon and sheath injury and repair
 – Injury to synovial sheath
 – Poor blood supply and ischemia
 – Immobility
 – Gapping

Tendon Healing

Numerous studies to minimize adhesions
- Oral: steroids, antihistamines, NSAIDS
- Topical: 5-FU, TGF-beta, PDGF, IGF, BMPs, beta-aminoproprionitile, hyaluronic acid, collagen solutions
- Physical: silicone, polyethylene, Adcon-T gel, interposed sheath flaps

Tendon Repair

• The Ideal Repair!!!
 - easy placement of sutures in the tendon
 - secure suture knots
 - smooth juncture of tendon ends
 - minimal gapping at the repair site
 - minimal interference with tendon vascularity
 - sufficient strength throughout healing to permit application of early motion stress to the tendon
Tendon Repair

- A few questions:
 - Core suture number?
 - Suture size?
 - Grasping or locking?
 - Dorsal or volar?
 - Epitendinous suture?
 - Sheath repair?

Tendon Repair

- Core suture number
 - The strength of a repair is roughly proportional to the number of core sutures
 - 6 strand repairs are more resistant to failure, but technically difficult and may damage tendon.
 - 4 strands with newer materials are easier, yet strong enough for controlled rehabilitation.

Timing of Tendon Repair

• Primary Repair
 – within 12 hours of injury
 – Usually with clean wound or N/V injury

• Delayed Primary Repair
 – Within 12 hours to 10 days
 – No difference when compared to emergent repair

• Secondary Repair
 – After 10-14 days
 – Will lead to shortening of the tendon

Core Repair

• Knots outside repair site stronger
• 4-6 strand core
• 3-0 or 4-0 braided poly
• Looped or single
• Strong suture techniques
• Decrease gap formation
• Allow early active motion

Rehabilitation

• Early Passive Motion
 – Wrist and MCP flexion
 – PIP and DIP extension
 – Controlled Motion
 • Active finger extension
 • Passive finger flexion
Rehabilitation

• Kleinert
 – Dorsal blocking splint
 – Rubber bands to maintain flexion
 – Active Extension
 – Passive Flexion

• Modification of Kleinert
 – Palmar bar to redirect forces and allow greater DIP flexion

Rehabilitation

• Duran and Houser
 – Patient controlled passive flexion
 – Requires greater patient compliance

Rehabilitation

• Strickland - Active-hold / Place-Hold
Rehabilitation

• Advances in materials and repairs have allowed for more aggressive protocols
• Increase risk of rupture with aggressive active mobilization
• Osada et al (2006)
 – 6 strands repairs and early active flexion
 – 26/27 Excellent or Good
 – No ruptures

Tendon Reconstruction

• Age
 – Younger patients do better
 – Compliance issues with children
• Cause of injury
 – Outcome worse with: crush, fracture, infection, N/V injury, skin loss
• Zone of injury
 – Zone 2 and 4 more difficult to rehab
• Comorbid conditions
 – Diabetic, smoker, RA, etc.

Graft Options

• Palmaris Longus
• Plantaris
 – Good for multiple grafts or long grafts
• Long toe extensors: middle 3 toes
• Toe Flexors
• EIP, EDQ
Graft Options

• Palmaris Longus
• Plantaris
 – Good for multiple grafts or long grafts
• Long toe extensors: middle 3 toes
• Toe Flexors
• EIP, EDQ

Two-Stage Tendon Grafting

• Stage 1:
 – Excise flexor tendons, keep distal FDP
 – Transect FDP at level of lumbral origin
 – Transect FDS at musculotendinous junction
 – Reconstruct pulleys if needed
 – Pass graft spacer and fix distally

• GOAL: PASSIVE FLEXION
 – Start motion within 1 week
 – Graft will develop pseudo-sheath over 3 months

Two-Stage Tendon Grafting

• Stage 2
 – Release distal end of rod
 – Attach graft to proximal end of rod and pull graft distally
 – Attach graft to distal phalanx
 – Tension and fix graft proximally to FDP
Zone 2 Flexor tendon Preparation Tips

- Mechanism of injury
- Associated injuries (Artery, nerve, bone, etc)
- Surgical timing (< 3 wks)
- Location (hospital vs surgery center)
- Surgical planning
 - (suture, tendon passage, nerve, micro)
- Anesthesia (General, Block, WALANT)
- Hand therapy
Repair tips

• Mastery of anatomy & meticulous surgical technique
• Atraumatic tendon handling
• Ragged edges removed with scalpel or tendon cutting device
• Venting or release of selected pulleys
• Strong suture techniques
• Decrease gap formation
• Allow early active motion