Biomechanical Considerations for the SI Joint

Castellvi Spine
May 13, 2017
Boyle C. Cheng, PhD

Disclosure
Research Funding
Aesculap
Alphatec Spine
Globus
K2M
Medtronic
Orthokinetica
Ratchiotek
Stryker Spine

Porsche 911 Cooling System
Type 993 and previous (1963-1997)
Type 996 (1998-2005)
Spine Biomechanical Testing

• Method of Comparative Testing
 – Flexion extension and lateral bending (pure moment testing – flexibility protocol)
 – Axial torsion and axial compression (are also important)

"Pure Moment" Testing
What bending moment does each intervertebral level see?

Panjabi, 1988

Modified without permission from Panjabi, 1988
Sacroiliac Joint Fusion

Minimally Invasive iFuse Implant System®

Vs. Open SI Fusion:
- Smaller incision
- Reduced blood loss
- Short procedure ~ 1 hour
- No need for bone grafting

Why the unique triangular design?
- Cannulated screw may loosen

Design: Triangle vs. Round
- Porous titanium plasma coating allows for biologic fixation
- Larger surface area designed to stabilize and fuse the heavily loaded SI joint
- 3X stronger than screw

Anatomy & Biomechanics of the SI Joint

Sacroiliac Ligaments

- Ventral
- Dorsal

Vascular Anatomy

- Mid-line cut looking lateral
- Superior Gluteal Artery
SI Joint Motion

Multi-planar motion
- Simultaneously rotate and translate through 3 axes of motion

Motions (<4° in any plane)
- Nutation/Counternutation
 - Primary motion
 - Males: 1 - 2°
 - Females: 2 - 4°

Sacral Translation
(A-P motion) up to 1.6mm

Biomechanical Goal of Rigid Fixation

- Fixation design rational
 - Provides immediate stabilization and fixation
 - Adjunct to fusion, i.e. “stiffens” FSU

- Clinical relevance
 - Reduce instability of pathologic FSU (+ ROM)
 - Correlated clinical outcomes to stiffness

- Metric
 - ROM

Good Idea?
Comparison Treatments

1. Intact
2. Intact (Resection)
3. Destabilized
4. Instrumented SI

<table>
<thead>
<tr>
<th>Biomechanical Metric</th>
<th>Significant Mode of Loading</th>
<th>Clinical Relevance</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROM</td>
<td>Flexion-Extension</td>
<td>Standard comparison technique for fixation constructs</td>
</tr>
<tr>
<td>Anterior Column Load Sharing</td>
<td>Axial Compression</td>
<td>graft and construct load sharing capability</td>
</tr>
<tr>
<td>Facet Translation Analysis</td>
<td></td>
<td>facet interaction: articulation and joint separation</td>
</tr>
<tr>
<td>Interpedicular Displacement</td>
<td></td>
<td>posterior column effects</td>
</tr>
<tr>
<td>Finite Helical Screw Axis</td>
<td></td>
<td>Rotation from time frame A-B: independent axis measurement</td>
</tr>
</tbody>
</table>
Defining SI Joint Orientation

Biomechanical Study Design

Motion of the SI joint

- Primary motion is nutation, which is a nodding type of motion
 - 1-2 degrees for males
 - 2-4 degrees for females
- Center of Rotation is the S1 neuroforamen

Frost et al. 2006
Conclusion

- Adjacent levels changes (L5-S1)
 - Not able to detect changes in pure moment testing
- Due to relatively small magnitudes of gross joint motion
 - Should we define as instability?
 - May still have implications for the presence of pain in spite of a small ROM
- Specific biomechanical considerations
 - Consider plane of loading for the joint
 - Many models utilize single leg stance

Thank you!