Avoiding Complications in TSA:
Fracture, Instability, Neurologic

Joseph A. Abboud, MD
Professor of Orthopaedics
Shoulder and Elbow Service
Rothman Institute
Thomas Jefferson University Hospitals

Daniel E. Davis, MD, MS

Disclosures

• Joseph A. Abboud, MD
 • Depuy Synthes - Research Support
 • Zimmer - Research support
 • Tornier - Research Support, Paid Speaker
 • Arthrex - Research Support
 • OREF - Research support
 • Department of Defense - Research Support
 • Wolters Kluwer Health - Lippincott Williams & Wilkins - Royalties
 • Integra - Royalties, Research Support
 • DIO - Royalties
 • Caperna - Royalties
 • Minimvasive - Scientific Advisory Board
 • OrthoSpace - Research support
 • Mid Atlantic Shoulder and Elbow Society - Board of Directors
 • Globus - Royalties
 • ASES - Executive Board

Primary TSA

Avoiding This
Achieving This
What are the complications?

- Leschinger et al (Germany): Risk factors for intraop complications
- 275 Primary Tornier Aequalis TSA by 4 surgeons
- 22 (8%) Category I (intraop) complications
 - 4 nerve injuries
 - 2 Dislocation
 - 6 Humeral fractures
 - 5 Glenoid fractures
- ASA >/= 3 and Nicotine use significantly increased risk

Factors Effecting Complications

- Disease related factors
- Patient related factors
- Surgeon related factors

“The surgeon is the method” – Matsen

Background

- TSA growing at a rate faster than that of hip and knee arthroplasty
- Incidence of complications has remained steady, however the volume of complications and revision burden continues to rise
- Avoiding complications is most effective way to maintain a long, effective joint replacement
Step 1: Do Your Homework

- **Prep for the case**
 - Know the potential pitfalls in your patient
 - Pre-op imaging
 - BMI, Severity of shoulder specific disease
 - Team you are working with
 - Implant system
 - Back up systems in place
 - Skill level of your help... fellow/resident
 - Reasonable goals
 - Your abilities

- **Know your Design options**
 - Humerus → Diaphyseal fit; Metaphyseal fit; Stemless
 - Glenoid → Peg component; Posteriorly augmented component; bone graft

Step 2: Plan the Steps of the Case in Your Mind

- **Exposure**
 - Complete (360) subscapularis mobilization
 - Humeral release of capsule past 6 o’clock
 - Humeral osteophyte removal
 - Lateral excision with complete superior, anterior, and inferior capsule release

- **Humerus**
 - Neck cut made in anatomic inclination and version
 - Anatomic restoration of head

- **Glenoid**
 - Centering pin placed in neutral version exiting at Matsen’s point
 - Reaming to subchondral bleeding bone
 - Peg holes drilled within the vault
 - Restore to near anatomic version

Step 3: Know Where the Landmines Lie

- **Exposure**
 - Axillary nerve within deltoid laterally
 - Axillary nerve inferior to subscapularis running inferior to capsule ... AM to PI
 - Musculocutaneous nerve deep and medial to conjoint tendon
 - Axillary artery deep and medial to conjoint
 - Osteophyte removal at calcar

- **Humerus**
 - Superior and posterior rotator cuff near neck cut
 - Breaching canal and metaphysis

- **Glenoid**
 - Fracture during reaming/impacting
 - Suprascapular nerve injury during drilling
Step 4 Meticulous Patient Positioning

- Beach chair positioning to 45 degrees
 - Cerebral hypoperfusion
- Shoulder over edge of bed
 - Free circumferential movement of arm
 - Keep portion of medial scapula stabilized on the bed
- Arm positioners are helpful
- Draping to optimize infection control

Step 5: Humeral Sided Prep

- Humeral releases
 - Inferior release past 6 o'clock
- Osteophyte removal
 - Defines true anatomic neck
- Head resection along anatomic neck
 - +/- cutting guide
 - Version variable (around 30° of retroversion)
- Superior margin of resection should abut cuff insertion
 - Protect cuff during osteotomy!

How to Avoid Fracture

- Humeral fractures
 - Greater tuberosity during humeral retraction for glenoid prep, stem insertion, stem removal, or dislocation
 - Treatment: suture fixation
 - Metaphysis during stem prep or removal
 - Treatment: Cerclage cables or sutures +/- cemented stem
 - Shaft fractures during stem prep/insertion/removal or arm manipulation
 - Treatment: Fracture exposure, reduction, radial nerve exposure, cerclage
 - Athwal et al 2009: 1.5% incidence intraop humeral fractures
 - Risk factors: Women, Revision surgery, Press fit implants
- Glenoid fractures
 - Rare
 - Likely due to reaming
Pitfall: Humeral Component Malposition

- Undersized head → Bone impinges
- Oversized head → Cuff Tension
- Too little offset → Soft Tissue Laxity
- Too much offset → Cuff Tension
- Height too low → Tuberosity impinges
- Height too high → Cuff Tension

Neck Shaft Angle

- Varus cut = inferior head position

Step 6: Understand and Properly Prep for Glenoid Morphology

<table>
<thead>
<tr>
<th>Recognition key</th>
<th>PSI, virtual planning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Can lead to:</td>
<td></td>
</tr>
<tr>
<td>Peg perforation</td>
<td></td>
</tr>
<tr>
<td>Posterior instability</td>
<td></td>
</tr>
<tr>
<td>Earlier glenoid failure</td>
<td></td>
</tr>
</tbody>
</table>
Pitfall: Posterior Glenoid Wear

Strategies for management
- Eccentric reaming (up to 15°)
- Augmented glenoid component
- Posterior grafting for greater than 9 mm bone loss

Step 7: Spend Time Trialing

- **Try before you Buy**
 - Dial in eccentricity of humeral head component
 - Assess smoothness of glenohumeral motion
 - Assess cuff tension
 - 50% posterior translation
 - Loosest shoulder will ever be is in surgery.
 - **Err on loose not tight.**
 - **UNDERSIZE OR REVIZE**

Lateral GlenoHumeral Offset

- Effected by head size
- LGHO affects tissue tension
 - Rotator cuff length (strength)
 - Deltoid moment arm (strength)
 - Capsular length (range of motion)
Avoiding Instability

• First assessment at reduction with trial or final implants
 • Matsen 40 50 60 rule with arm in scapular plane
 • 40 degrees ER, 50% translation; 60 degrees internal rotation at 90 abduction

• If unstable and cuts appropriate → increase humeral head size
 • Increase head height if available

• Did the glenoid need to be augmented?
 • Bone graft versus polyethylene augment

• Posterior capsulorrhaphy
 • Assess with trials prior to final implants
 • Anchors in posterior glenoid and reef capsule (rare in my experience)

Nerve Injuries

• Reported between 0.6 – 16.7% in primary shoulder arthroplasty

• Traction injury → More likely

• Direct injury → Cement extrusion, Laceration, Sutureunlikely

Avoiding direct injury

• Axillary nerve is at risk when working inferior to the subscapularis
 • Care should always be taken to protect the nerve or palpate it when working close
 • Recommend against static retractors directly on nerves
 • I avoid paralysis
 • Use bougie around nerve

• Axillary nerve also at risk in lateral and anterior deltoid
 • Muscle should be elevated deep to deltoid fascia and avoid intramuscular dissection to avoid de-nervation of muscles

• Musculocutaneous nerve direct injury is rare, but the location of the nerve should still be palpated
Avoiding traction injury

• Nerve Monitoring
 • Provides alerts for intraoperative nerve injury

• Considered controversial

• Malik et al 2014
 • 7/21 (33%) primary or revision TSA had intraop nerve tension change
 • All but one returned to normal by end of case ⇒ no lasting deficit
 • Male gender more common and median nerve most affected

• Naga et al 2007 (Neer Award)
 • 17/30 (56%) of patients had signal changes intraop
 • 76% of alerts returned to baseline after arm repositioning
 • Only 2 patients had deficits that did not recover
 • Monitoring can give the opportunity to reposition the arm when nerves are at risk of damage

IONM Results 2016 ASES Abboud et al

• 440 arthroplasty cases included
 • 215 primary anatomic TSA, 95 primary reverse TSA, 34 primary hemiarthroplasty, 56 revision arthroplasty

• 5 post-operative transient nerve injuries (1.1%)
 • Radial nerve (2), axillary (2), mixed brachial plexus (1)
 • All occurred in anatomic arthroplasties more primaries

• All nerve injuries resolved within 1 year

Conclusions

• Complications during TSA are rare, but disastrous

• More common intraoperative complications are fracture, instability, and nerve injury

• Complications can be avoiding with meticulous surgical detail

• When these complications do occur, the ability to manage them and produce a good outcome is challenging but feasible
THANK YOU.