B2 Glenoid: Anatomic Reconstruction – Bone or Augment

Eric T. Ricchetti, M.D.
Current Solutions in Shoulder and Elbow Surgery
Tampa, FL
February 11, 2017

I have something to disclose.

Detailed disclosure information is available via:

“My Academy” app;

Printed Final Program; or
AAOS Orthopaedic Disclosure Program on the AAOS website at http://www.aaos.org/disclosure

Goals of Anatomic TSA

• Correction of pathologic bony deformity (retroversion)
• Restoration of native joint line
• Balancing of the soft tissues
• Centering of the humeral head
• Is this possible with moderate to severe glenoid bone loss (B2 glenoid)?
Options for Correction of Posterior Glenoid Bone Loss in TSA

- Ream the high side: Limit of 15-20° correction of retroversion
- Cases that exceed this limit (B2 glenoid):
 - Full correction leads to joint line medialization and/or peg perforation, narrowed glenoid
 - Incomplete correction may have negative consequences

What is the Consequence of Incomplete Correction?

- Ho et al, JBJS 2013: Significance of retroverted glenoid
 - 66 TSA cases with press-fit pegged glenoid component
 - Mean f/u: 3.8 yrs (range, 2-7)
 - 20 cases (30%) with osteolysis of center peg
 - ≥15° of component retroversion associated with 5-fold increase odds of osteolysis around center peg
 - No correlation to worse clinical outcome

What is the Consequence of Incomplete Correction?

- B2 glenoid with posterior humeral head subluxation associated with poorer TSA outcomes compared with other glenoid types.
 - 12% revision for glenoid loosening, instability (mean 77 mos)
 - 66.3% very satisfied or satisfied
 - 20% radiographic loosening (56% shifted):
 - Significantly higher preoperative retroversion, posterior humeral head subluxation in loose glenoids.
 - Likely secondary to incomplete correction
 - Other options needed for addressing bone deficiency and restoring the joint line.

Denard & Walch, JSES 2013
Walch et al, JSES 2012
Options for Correction of Posterior Glenoid Bone Loss in B2 Glenoid

- Mild bone loss:
 - High-side reaming may be possible
 - Use of posterior augment: bone graft vs. augmented component
- Moderate to severe bone loss:
 - Use of a posterior augment: bone graft vs. augmented component
 - Reverse TSA ± bone graft
- Achieves goals of component placement

Bone Graft Augmentation

- Use of humeral head autograft in primary TSA:
 - Matched articular surface vs. step-cut
 - Technically demanding
 - Bone incorporation needed for long-term implant stability
- Clinical results mixed in several case series:
 - Small numbers, heterogeneous
 - High radiolucency rates
 - Complications with graft preparation, fixation, and incorporation

Bone Graft Augmentation

<table>
<thead>
<tr>
<th>Study</th>
<th>Patients</th>
<th>Mean Age</th>
<th>Male/Female</th>
<th>Graft Source</th>
<th>Stem Orientation</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hsu et al. (2011)</td>
<td>24</td>
<td>65.8</td>
<td>21/3</td>
<td>Allograft</td>
<td>Reverse</td>
<td>92%</td>
</tr>
<tr>
<td>Huang et al. (2009)</td>
<td>10</td>
<td>65.5</td>
<td>8/2</td>
<td>Allograft</td>
<td>Custom</td>
<td>90%</td>
</tr>
<tr>
<td>Lee et al. (2012)</td>
<td>10</td>
<td>65.5</td>
<td>8/2</td>
<td>Allograft</td>
<td>Reverse</td>
<td>90%</td>
</tr>
<tr>
<td>Lin et al. (2010)</td>
<td>10</td>
<td>65.5</td>
<td>8/2</td>
<td>Allograft</td>
<td>Reverse</td>
<td>90%</td>
</tr>
<tr>
<td>Liu et al. (2013)</td>
<td>10</td>
<td>65.5</td>
<td>8/2</td>
<td>Allograft</td>
<td>Reverse</td>
<td>90%</td>
</tr>
<tr>
<td>Stephens et al. (2015)</td>
<td>10</td>
<td>65.5</td>
<td>8/2</td>
<td>Allograft</td>
<td>Reverse</td>
<td>90%</td>
</tr>
</tbody>
</table>

59% 0-54% 11-71%

Bell & Noble, JSES 2000

Stephens et al., JBJS 2015
Augmented Component

• Biomechanical & modeling data show ability to address bone loss, recreate joint line
• Early clinical outcomes appear favorable
• Three commercially available implants

Augment Non-Clinical Data

• Biomechanical comparison of four augmented glenoid designs to standard anchor peg glenoid.
 - Resistance to anterior glenoid lift-off from posterior eccentric load assessed.
 - Stepped glenoid significantly more stable than wedge shaped designs.

Augment Non-Clinical Data

• Computational model to compare three available designs in B2 glenoids.
 - Amount of bone removal and bone quality remaining assessed
 - Correction to 0° vs. 10° retroversion
• Posterior wedge design:
 - Significantly less bone removal
 - Significantly greater residual glenoid bone density posteriorly
• Wright et al, Bull HJD 2015: Wedge augment for posterior glenoid wear vs. standard glenoid without posterior wear
 - Age and sex matched (24 pts/group), mean f/u 29.4 mos (min 24 mos)
 - No difference in pain, outcome score improvement between groups:
 - No complications in either group
 - 1 augmented component radiographically loose
 - 17/20 augmented components centered on axillary view, 3/20 anteriorly subluxated

• Favorito et al, JSES 2016: Stepped augment for posterior glenoid wear
 - 22 pts, mean f/u 36 mos (20 B2, 2 C)
 - Significant improvement in function, outcome scores
 - 1/22 central peg osteolysis
 - 2/22 implant instability

• Stephens et al, JSES 2016: Stepped augment for posterior glenoid wear
 - 21 pts, mean f/u 35 mos (19 B2, 2 C)
 - Significant improvement in function, outcome scores
 - 1 central peg osteolysis
 - No complications

• Evaluate post-operative correction of glenoid pathology and humeral head alignment in TSA using three-dimensional computed tomography (3-D CT) analysis.
 - Compare by:
 - Implant type (standard or augmented glenoid component)
 - Glenoid morphology (Walch classification)
Methods
- 88 patients with advanced glenohumeral osteoarthritis underwent TSA with polyethylene anchor peg glenoid component:
 - 3-D CT pre-operatively planning
 - Glenoid component type:
 - 57: standard (APG)
 - 31: posteriorly augmented (STEP)
 - Tantalum marker bead (1 mm) embedded in peripheral pegs for implant tracking
- Evaluated with pre-operative CT and post-operative CT within 3 months of surgery.

Results
- STEP vs. APG comparison for B2/B3 glenoids:
 - Version correction significantly greater with STEP (11.9±6.6° vs. 3.6±3.8°, \(p<0.001 \)).
 - Correction of pathologic joint line significantly greater with STEP (1.1±2.0 mm vs. -0.7±1.8 mm lateralization, \(p=0.005 \)).
 - Trend for better post-operative HGA with STEP (0.4±3.2% vs. -1.3±2.7%, \(p=0.083 \)).
 - Significantly greater correction of posterior humeral head subluxation relative to premorbid anatomy with STEP (20.4±7.4% vs. 13.6±6.9%, \(p=0.001 \)).
CCF Clinical Series

- 108 consecutive shoulders
- 2 Fellowship-trained surgeons
- Anatomic TSA with Augmented Glenoid for Primary OA
- Jan 2010 – Nov 2014

70 Shoulders
3-D preop CT
2 yr. follow-up

108 consecutive shoulders
2 Fellowship-trained surgeons
Anatomic TSA with Augmented Glenoid for Primary OA
Jan 2010 – Nov 2014

55 shoulders
Walch B2 or B3

70 Shoulders
3-D preop CT
2 yr. follow-up

CCF Clinical Series

- 64 ± 7 years old (range, 51-80)
- 43/55 (78%) Male
- Median FU 2.6 years (range, 2-5.6)
- 34 (62%) B2, 21 (38%) B3

PREOP POSTOP P-value

<table>
<thead>
<tr>
<th></th>
<th>PREOP</th>
<th>POSTOP</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Penn Score</td>
<td>24 [13-43] (5-54)</td>
<td>93 [64-97] (51-100)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Version</td>
<td>-25°±7° (-43° – -12°)</td>
<td>-12°±7° (-30° – 1.3°)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Centered?</td>
<td>10/55 (18%)</td>
<td>45/55 (81%)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Forward Flexion</td>
<td>110° [90°-130°] (70°-160°)</td>
<td>160° [146°-170°] (90°-180°)</td>
<td><0.0001</td>
</tr>
<tr>
<td>External Rotation</td>
<td>20°±16° (0°-60°)</td>
<td>50°±14° (10°-80°)</td>
<td><0.0001</td>
</tr>
</tbody>
</table>

Mean ± Std Deviation (Range), Median [Interquartile Range] (Range), Number (Percentage%)

2 Complications/Reoperations – Subscapularis repair 6 months postop,
Scope for painful TSA 2 years postop – unknown etiology

CCF Clinical Series
Conclusions

- Bone graft, augmented component both options for treatment of B2 glenoid.
 - Bone graft: mixed results in literature
 - Technically challenging
 - Bone graft size, quality variable
 - Augmented component: promising early clinical results
 - Reproducible surgical technique, defined corrections (augment sizes)
 - Ability to correct pathology (version, joint line, humeral head subluxation)
 - Longer follow-up needed to assess maintenance of correction over time, impact on component loosening
 - Limits to pathology can correct (B3 glenoid)?
Case Presentation (B2)

- 63 year-old male with advanced glenohumeral arthritis and B2 glenoid, rotator cuff intact

- Maintaining joint line with correction of version:
 - Standard glenoid vs. 5 mm augmented glenoid
Case Presentation (B2)

Humeral Head Autograft
Augment Clinical Data

- Three clinical series in literature to date:
 - Wright et al, Bull HJD 2015 (wedge)
 - Favorito et al, JSES 2016 (posterior step)
 - Stephens et al, JSES 2016 (posterior step)

- All done for posterior wear, all show improvement in pain, function, outcome scores:
 - Wright et al: No difference age and sex matched

- No difference in pain, outcome score improvement between groups:
 - No complications in either group
 - 1 augmented component

Results

- B2 glenoids with STEP compared to A1 glenoids with APG:
 - Similar correction to premorbid version (within -2.2±6.3° vs. -1.8±4.1°, STEP vs. APG, p=0.839).
 - Similar joint line correction (1.1±2.0 mm vs. 1.2±1.4 mm, STEP vs. APG, p=0.822)
 - STEP did not correct to premorbid joint line in B2s as much as APG in A1s (-1.2±2.2 mm vs. 0.9±1.0 mm, p<0.001).
 - Post-operative HGA was similar between groups (0.4±3.2% vs. -1.1±4.0%, STEP vs. APG, p=0.154).