Principles of Tendon Transfers for Persons with Tetraplegia

Michael S. Bednar, MD
Loyola University Medical Center
Hines VA Hospital
Shriners’ Hospital for Children - Chicago

Tetraplegia and Hand Function

- Physical Limitations
 - Decreased control of arm in space
 - Limited to no grip/pinch strength
- Functional Limitations
 - Decreased mobility
 - Decreased ADL performance
 - Decreased independence with work tasks
- Psychological Limitations
 - Appearance of hand
 - Confidence/social interaction

When patients asked to list importance in restoration of function:
- Hand use – 75.7%
- Bowel and bladder use – 13.5%
- Walking – 8.1%
- Sexual performance – 2.7%

Hansen, et al. (Arch Phys Med Rehab, 1976)
Tetraplegia and Hand Function

- 65-75% of patients with tetraplegia may benefit from surgery of the upper extremity
- Less than 14% of those identified as candidates actually have surgery performed

- Surgery
- Candidate
- Not Eligible

Why so few?

- Current research examines Physiatrists’ influence:
 - People with tetraplegia who learned about these procedures from physicians were significantly more likely to have a NEGATIVE first impression of UE reconstruction. (Wagner et al, 2007)
 - Physiatrists are more likely to feel that the tetraplegia population is noncompliant and lack social support (Curtin et al, 2007)

Tetraplegia and Hand Function

- Most hand surgeons and physiatrists believed that these procedures were beneficial
- An inadequate referral network between physiatrists and surgeons (Curtin et al, 2005)

Conclusions A lack of coordinated cross-specialty relationships is largest barrier to the appropriate use of upper extremity reconstruction for people with tetraplegia

Rehabilitation Institute of Chicago

- 28 bed in-patient SCI program
- Since 1998, all patients referred to tendon transfer clinic by physiatrist
 - Dr. David Chen
 - Supportive, knowledgeable and proactive regarding tendon transfer procedures for persons with tetraplegia
- Monthly Tendon Transfer clinic with an interdisciplinary and multi-institutional team:
 - Hand Surgeon
 - Physiatrist
 - SCI Occupational Therapist
 - Certified Hand Therapist

Study Participants

- Adults referred to the RIC’s tendon transfer clinic between 1998-2007.
- 113 total clinic evaluations were reviewed.
- 15 subjects had a tendon transfer procedure performed.
- Despite having all patients referred to tendon transfer clinic by a supportive physiatrist, only 7.5% of our patients have tendon transfer procedures performed.
 - Comparable to national average of approximately 10%

Identifying and Educating Surgical Candidates: Tendon Transfer Clinic
Early Presentation of Surgical Options

- General information on surgical options
 - Introduced by inpatient therapist and/or physiatrist near discharge
 - Provide written information in discharge packet
 - Offer video education materials
 - Introduce to post-op patient if at all possible
 - Volunteers
 - Video footage

Team Approach to Evaluation and Treatment of Surgical Candidates

- Patient
- Family/Caregiver
- Physiatrist/Pediatrician
- Occupational Therapist
- Nurse
- Social worker
- Psychologist
- Hand Surgeon

Tendon Transfer Clinic Goals

- Determine candidacy for tendon transfers
- Establish functional goals
- Educate patient/family regarding options
- Communicate between team members
- Determine optimal timing for surgical intervention
- Identify any prehab needs
Who is a Good Surgical Candidate?

- Has functional goals
- Is motivated
- Understands benefits and limitations of surgery
- Demonstrates emotional and psychological stability/adjustment to disability
- Is committed to post-op rehab process

Who is a Good Surgical Candidate? (cont.)

- Has adequate PROM for good post-op function
- Has muscle strength requirements for transfer
- Additional Considerations
 - Has adequate proximal stability
 - Has intact sensation or good compensatory mechanisms in place

Who is a Candidate?

- Individuals with cervical spinal cord injuries
 - SCI ASIA levels C5-C8
 - International Classification 1 or better
Classification of Upper Extremity Involvement

- ASIA Classification
 - Common classification system
 - Based on lowest functioning cord segment
 - Variability in muscle functioning in each class

International Classification for Surgery of the Hand in Tetraplegia

- Determines number of muscles present below the elbow
- For a muscle to be “present,” it must have Grade IV strength
- Note- muscles above the elbow should also be assessed (biceps, triceps, and shoulder muscles)

Manual Muscle Testing - Grading

- 5: Full motion against gravity and against full resistance
- 4: Full motion against gravity and moderate resistance
- 3+: Full motion against gravity and mild resistance
- 3: Full motion against gravity with no resistance
- 2: Full motion in gravity eliminated plane
- 2-: Partial range of motion in gravity eliminated plane
- 1: Trace motion noted/palpable or visible contraction
- 0: No contraction palpable/total paralysis
International Classification System

- 0 - No muscles functioning
- 1 - BR
- 2 - ECRL
- 3 - ECRB
- 4 - Pronator teres
- 5 - FCR
- 6 - EDC
- 7 - Thumb extensors
- 8 - Partial finger flexors
- 9 - All but intrinsic
- X - Exceptions

Common Muscles Transferred

- BR
- ECRL
- Pronator teres
- Posterior deltoid
- Biceps

Manual Muscle Testing

Brachioradialis:
1) Bend elbow to 90° with forearm in neutral rotation
 - Stabilize posterior elbow
2) Apply resistance to distal forearm (at the wrist) in downward direction while patient flexes elbow
Manual Muscle Testing

Brachioradialis (cont’):
3) Palpate BR at proximal forearm.
4) Try to displace muscle bulk –
 - if easily displaced, too weak for transfer

Manual Muscle Testing

Extensor Carpi Radialis Longus (ECRL) vs Extensor Carpi Radialis Brevis (ECRB)

- Important to distinguish separately
 - If ECRL is transferred, need ECRB to extend wrist

Manual Muscle Testing

ECRL vs ECRB (Cont’)

- ECRL and ECRB
 - Strength 5/5
 - Bean’s Sign
 - Groove or depression near the lateral epicondyle if both ECRL and ECRB functioning
- ECRL alone
 - Radial deviation of wrist
 - Wrist extension 4/5
Surgical Options

Tetraplegia and Hand Function

- Goals of tendon transfers
 - Increase independence and UE function by improving
 - Elbow extension
 - Lateral pinch (2.2 psi for 90% of ADL)
 - Self-Catheterization
 - Dressing, ADLs
 - Grasp and release
Elbow Extension
Reconstruction

Elbow Extension

- 70% of patients with tetraplegia lose elbow extension

Elbow Extension Functions

- Improved mobility in bed
- Independence with transfers
- Safety with driving
- Balance in sitting
- Weight shifting
- Overhead reach
- Manual wheelchair use
- Acts as an antagonist to brachioradialis
Elbow Extension

- Surgical Alternatives
 - Posterior Deltoid to Triceps
 - Biceps to Triceps

Posterior Deltoid to Triceps

- Deltoid to triceps transfer
 - Elevate posterior deltoid from humeral insertion
 - Raise central 1/3 of triceps tendons with a flap from olecranon
 - Weave triceps and deltoid tendons together using tibialis anterior, fascia lata, or Dacron Tape
Posterior Deltoid to Triceps

Standard Precautions

- Do not allow arm to cross midline for 11 weeks
 - Wheelchair
 - Arm trough
 - Abduction bar
 - Bed
 - Shoulder abducted 30°
 - Arm elevated on pillows

Outcomes - Posterior Deltoid to Triceps

- Elbow extension strength
 - Pre-op
 - MMT 0
 - Post-op
 - 8 grade 4
 - 8 grade 3
 - 1 grade 2

(Lacey, et. al, J Hand Surg, 1986)
Elbow Extension

- Biceps to Triceps
 - Recommended for elbow flexion contracture >30º and supination contracture
 - Must have brachialis and supinator

Biceps to Triceps

- Biceps passed medially
 - Avoid compression of radial nerve

Rehabilitation Biceps to Triceps

- Post-op Day 3-5
 - Post-op dressings removed
 - Place in hinged elbow splint
 - Elbow locked full extension for 3 weeks
 - Worn continuously for 11 weeks
 - No midline restrictions
Biceps to Triceps

- 8 deltoid vs. 8 biceps transfers
- At the 24-month F/U
 - 7 of 8 biceps transfers grade 3 or better
 - 1 deltoid transfer grade 3
 - Considerable but subclinical loss of elbow flexion torque
 - deltoid 32%
 - biceps 47%
- All subjects more satisfied with performance of their goals after undergoing elbow extension reconstruction

Deltoid vs. Biceps

- Both work well when surgery and rehab are done correctly
- Biceps transfer easier surgery
- Biceps transfer easier to rehab
- In higher level injury or combined with brachial plexus injury, must be sure supinator and brachialis are intact if transferring biceps

Hand Reconstruction
Hand Reconstruction

- Goals dependent on number of forearm muscles
 - Expendable
 - Functioning
- Based on International Classification System

International Classification

<table>
<thead>
<tr>
<th>Group I</th>
<th>Group II</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - BR</td>
<td>3 - ECRB</td>
</tr>
<tr>
<td>2 - ECRL</td>
<td>4 - PT</td>
</tr>
<tr>
<td>5 – FCR</td>
<td></td>
</tr>
</tbody>
</table>

- Transfers done for pinch only
- Transfers done for pinch and grasp and release

Group 2 – Pinch and Grasp

- International Classification = OCu3 or above
 - Two-Stage tendon transfers for hand function
 - Stage 1 = extension
 - Stage 2 = power
- Goals
 - useful grasp
 - pinch
 - release

(House, J Hand Surg, 1985)
Group 2 – Pinch and Grasp

- Available for transfer
 - BR
 - ECRL
 - PT

- Functions needed
 - Finger extension
 - Thumb extension
 - Intrinsic function
 - Finger flexion
 - Thumb flexion
 - Thumb CMC stability

Group 2 – Pinch and Grasp

Extensor Phase (Stage 1)

- Finger extension
 - EDC tenodesis
 - ? Intrinsic balancing

- Thumb extension
 - EPL tenodesis
 - FPL split tenodesis

- Thumb stability
 - Thumb CMC arthrodesis

Group 2 – Pinch and Grasp

- Stage I - Extensor Phase
 - Tenodesis of EDC and EPL
 - Intrinsic tenodesis
Group 2 – Pinch and Grasp

- EDC tendons pass under horseshoe trough in distal radius
Group 2 – Pinch and Grasp

- Intrinsic tenodesis
- Zancolli lasso
- Best when Bouvier’s maneuver produces PIP extension

Bouvier Manuver

Group 2 – Pinch and Grasp

- Stage I – Extensor Phase
- FPL split tenodesis
- Allows transfer to FPL to flex MP instead of IP joint
Group 2 – Pinch and Grasp

Group 2 – Pinch and Grasp

Group 2 – Pinch and Grasp
Group 2 – Pinch and Grasp

- Stage II – Flexor Phase
 - BR to FPL
 - ECRL to FDP

- Synchronize FDP tendons
- Set tension on ECRL to FDP first

- Tension on thumb allows thumb to touch index with wrist in neutral
- Make sure fingers flex before thumb adducts to prevent thumb in palm
Material and Methods

- **Group 1**
 - 3 longitudinal incisions in FDP
 - 2nd incision 90° to others
 - 2-0 braided suture
 - Horizontal mattress at weave sites
 - 5-0 monofilament 3mm from end of each weave

- **Group 2**
 - Same as Group 1
 - Free end of FDS/FPL folded over weave
 - Simple running suture on both sides of splint over weave

Results-Load to Failure

- **Group 1**
 - 117 ± 22N
 - All failed thru weave

- **Group 2**
 - 242 ± 48 N
 - 2 failed thru weave
 - 9 failed thru bone (p<0.001)
3-5 Days post-op
- Remove splint for early motion
 - Place and hold fist
 - Passively place fingers and thumb in fist with wrist in extension
 - Release and hold position
 - Relax slowly into extended position
 - Perform 2 sets of 10 each hour

Functional Tasks
- AROM = 10 days
 - Pinch
 - Grip
- Begin light functional tasks
 - Week 2
- W/C Propulsion
 - 4 weeks
- Functional Transfers
 - 6-8 weeks

Group 2 – Pinch and Grasp
Outcomes – Multiple Procedures

- **Strength**
 - Grip 6-15#
 - Pinch 2-6#
 - Elbow extension MMT: 2 to 4 (from 0)

- **Functional**
 - Picking up objects
 - Using keyboard and telephone
 - Brushing hair
 - Driving
 - Self-catheterization

(Mohammed, Freehafer, Mulcahey, Lamb & Chan)

Outcomes - Patient Satisfaction

 - 77% report positive life impact
 - 70% satisfaction with surgery

- **Mohammed et al (JBJS, 1992)**
 - 70% good or excellent results
 - 84% surgery improved quality of life

Outcomes – Multiple Procedures

- Patients report
 - Surgeries do NOT always increase independence
 - Often Independent prior to surgery
 - DO provide
 - Increased spontaneity
 - Increased speed
 - Increased ease picking objects up
 - Ability to perform specific tasks
 - I.e. may be able to pick up a pen off the table and sign name with one hand instead of donning splint, having someone put pen in place, signing name
Conclusion

- Tendon transfers provide balance and enhanced function to an imbalanced hand
- Pre-operative assessment and conditioning are critical to the success of the procedure
- Surgery should be based on patient-identified realistic goals

THANK YOU