Patella Fractures and Extensor Mechanism Injuries

Applied Anatomy of the Patella

Inverted Triangle
Apex Distal
Larger Lateral Facet
Increases Extensor Power
“pulley”

Mechanism of Injury

- Direct anterior blow
- Indirect mechanism
 - Quad mech over powers patella tendon
 - 2 part transverse fracture
Diagnosis

• H & P
• X-ray (lateral view most helpful)

Treatment

• Goals
 – Maintain biomechanical/functional integrity
 – Restoration of articular congruity
• Treatment options
 – Non operative
 – ORIF
 – Partial/complete patellectomy

Non-operative Treatment

• Minimal articular displacement
• Intact extensor retinaculum
• Long leg / cylinder cast in extension???
 • Maybe in the non compliant
 • Hinged Knee Brace
 • Extension (0-15) 4 weeks
 • Advance in increments
 15 degrees weekly
Operative Treatment

ORIF

- Anterior tension band wiring
- Lag screw fixation
- Combination of lag screws and tension band wiring
 - Fiber wire/tape
 - Steel wire
 +/− circumferential suture wiring

Operative Treatment

Plate Fixation

NEW?

Surgical Approach

- BONE FOAM or knee roll
- Expose and repair torn retinaculum
- Dissect periosteum from edge of fracture
- Reduction is judged based on anterior cortex
 - May not be reliable if there is comminution or coronal injury of subchondral surface
Extensile medial parapatellar approach

• Indicated for comminuted fractures
• Evert patella
• Allows direct visualization of articular surface

Tension Band
Biomechanical Principle

• Distractive forces of quadriceps contracture produces compression along articular surface

Biomechanical Evaluation
Anterior tension band vs 2 Lag screws vs Cannulated screws and steel wire

Cannulated lag screw with tension band wiring stronger

Treatment

Partial Patelllectomy
- One large fragment
- Other fragments comminuted

Partial Patelllectomy
- Quad strength 85% of unaffected side
- ROM 94% of unaffected side
- 78% good or excellent
- No threshold size for remaining patellar fragment

Complete Patelllectomy
- Avoid if possible
 - Only in cases of unsalvageable fractures/failed ORIF that can not be salvaged
 - Low patient satisfaction (6 – 25%)
 - Extensor strength reduced by 80 %
 - Loss of motion average 18 degrees
Surgical Setup
- Bump under ipsilateral hip
- Roll/Bone Foam
- Radiolucent table
- +/- Tourniquet
- Implants
- Large Weber tenaculum for reduction X 2

Post-op Management
- Early motion is preferred
- increase knee motion in a controlled fashion
 • ROM Brace in extension for 2 weeks (0-15)
 • Adv 15 degrees weekly after
- Weight bearing with knee in extension

Outcomes
- Most patients score worse on patient related outcome tools when compared to population norms.
 - SF-36: Differences in physical component score only
 - KOOS: Differences exist for all subscales

Extensor Mechanism Injuries

• Anatomy
 – Extensor Mechanism comprises the quadriceps tendon, patella and patellar tendons
 – Retinaculum and IT band
 • Secondary Extensors

• Mechanism of Injury
 – Forceful quadriceps contraction/load with knee in flexed position
 – Fall from height, motor vehicle accident
 – Be aware that lower energy mechanism may exist with elderly/medical co-morbidities.

• Physical Exam
 – Tenderness over quadriceps/patellar tendon
 – Palpable defects
 – Inability to actively extend knee or maintain extension.
 • May still be possible with intact retinaculum
Extensor Mechanism Injuries

- Radiographic
 - Insall ratio
 - Patellar tendon: Patella
 - ≥ 1.2 is abnormal
- Inferior pole of patella typically projects to Blumensaat’s line

Extensor Mechanism Injuries

- Other Modalities
 - Ultrasound
 - MRI useful for
 - Neglected tears: Degree of retraction/Status of tissue available for repair
 - Partial Injuries: Determine amount of extensor mechanism remaining in continuity.

Extensor Mechanism Injuries

- Treatment
 - Goals: Restore active knee extension
- Treatment Options
 - Non operative
 - Operative
 - Repair
 - Reconstruction
Extensor Mechanism Injuries

- Non Operative Management
 - Unacceptable medical risk
 - Functionally intact extensor mechanism
 - i.e. Partial disruptions

Extensor Mechanism Injuries

- Operative Treatment
 - Indications
 - Loss of extensor mechanism function in patient with acceptable medical risk
 - Options-Acute
 - Primary Repair
 - Multiple techniques described

Extensor Mechanism Injuries

- Techniques
 - End to end suture
 - Suture/Drill holes
 - Suture Anchor
 - Suture with turndown flap
Surgery

- Suture-Transosseous tunnel technique
 - Position: Supine
 - Implants/Instruments: 2.0 mm drill, Suture passer, Heavy nonabsorbable suture
 - Full thickness flaps to allow visualization of medial/lateral retinaculum.
 - krackow or other locking type suture configuration.
 - Three transosseous tunnels drilled in either antegrade or retrograde fashion through patella.

Chronic Extensor Mechanism Injuries

- Autograft/allograft reconstruction or augmentation
 - Poor tissue/>3 cm gap present
- V-Y turndown Flap
 - Helpful when <3 cm gap is present

Extensor Mechanism Injuries

- Outcomes
 - Acute Quadriceps tendon
 - Generally 80-100% good to excellent results (10-18)
 - Acute Patellar Tendon Repair
 - 70-100% Good to Excellent results

Extensor Mechanism Injuries

• Post Operative Management
 – Immobilize in extension during initial post operative period
 • Longer for chronic/tenuous repairs
 – Weight bearing with knee in extension
 • Brace/Cast
 – Systematically increase knee motion

Summary

• Operative treatment indicated for most patients with loss of extensor mechanism and acceptable medical risk
• Goal is congruent articular surface with stable fixation to permit early range of motion
• Allow early weight bearing with knee braced in extension