Allograft Treatment of Partial Thickness Rotator Cuff Tears

Detroit, MI
July 28, 2016

Biologic Xenograft Implant for Partial Thickness Rotator Cuff Tears

Detroit, MI
July 28, 2016

Partial Rotator Cuff Tears

Disclosures

- Paid Consultant
 - DePuy Synthes
 - Zimmer Biomet
 - Arthrex
 - Rotation Medical
 - Ceterix

- Surgeon Advisory Boards
 - Mitek Sports Medicine
 - Rotation Medical

© Copyright 2016 Shariff K Bishai DO PC
Associated Orthopedists of Detroit, PC
Sports Medicine, Shoulder Surgery and Hip Arthroscopy
Assistant Professor, Michigan State University College of Osteopathic Medicine
Assistant Professor, Oakland University William Beaumont School of Medicine
Professor, Detroit Medical Center Sports Medicine Fellowship
Past-President, American Osteopathic Academy of Orthopedics Sports Section
Past-President, Detroit Academy of Orthopaedic Surgery
Partial Rotator Cuff Tears

Shoulder Pain

- United States:
 - 4-6 Million People Per Year Seek Medical Attention
 - 1.5 Million Visits Per Year to Orthopaedic Surgeons

Partial Rotator Cuff Tears

Basic Science

- Causes
 - Macrotomra
 - Usually leads to acute full thickness injury
 - Repetitive Microtrauma
 - Degenerative Pathologic Process

Partial Rotator Cuff Tears

Overuse Injury Algorithm

- Overuse During Overhead Activity
- Occult Anterior Instability
- Injury to Static Ligamentous Restraints
- Fatigue Develops, Reducing The Dynamic Stabilization Leading to Eccentric Tendon Fiber Failure

Partial Rotator Cuff Tears
Basic Science

- Histopathologic Changes to the Torn Rotator Cuff
 - Matthews et al. 2006
 - Small Sized Tears
 - ↑ Fibroblast Cellularity
 - ↑ Intimal Hyperplasia
 - ↑ Expression of Leukocyte and Vascular Markers
 - Large and Massive Tears
 - ↑ Edema and Degeneration
 - ↑ Chondroid Metaplasia and Amyloid Deposition
 - No Increase in Inflammatory Cells or Blood Vessels
 - Small Tears Have the Ability to Heal, Large Tears Need to Be Repaired

About Rotator Cuff Disease

- There are no good options for early surgical intervention
- Chronic rotator cuff tendinopathy has been identified as a primary cause of rotator cuff tears (Hashimoto et al., Clin Orthop. 2003)
- There are no good options for early surgical intervention
- Significant incidence (25%) of re-tears and impaired function after repair (Flurin et al.)

Partial Rotator Cuff Tears
Defining the Tear

- Understanding the Footprint
 - Average maximum length of 23 mm (range: 18 to 33 mm)
 - Average maximum width of 16 mm (range: 12 to 21 mm)
Why Don’t Tears Heal?

- While the biologic potential for healing may exist, several factors, such as subacromial impingement, may adversely affect this process.
- Growing belief that local strain at the injury site is thought to contribute to impaired healing and tear propagation.

How Can We Create An Optimum Environment For Healing?

Hypothesis:

- The induction of a layer of new tendinous tissue on the bursal side of the supraspinatus tendon could reduce micro-strains within the tendon and could:
 - Provide an optimized, mechanical environment for tendon healing.
 - Inhibit or arrest tear propagation.

What are the attributes of an ideal scaffold for tissue regeneration?

- Provide a matrix scaffold to support the ingrowth of host tissues.

The IDEAL Scaffold:
What are the attributes of an ideal scaffold for tissue regeneration?

- Provide a matrix scaffold to support the ingrowth of host tissues.
- Provide an inductive and conductive stimuli for cell and vessel migration.
- Allow for normal tissue remodeling.
- Eventually be removed by the host.

The IDEAL Scaffold:
BioInductive Implant First To Clinically Demonstrate Tendon Tissue Induction

Dermal Collagen Patch

- No induction of new host tissue by dermal patch. No evidence of any functional tendon induced by dermal patch at 2 years.

RM BioInductive Implant

- BioInductive implant reabsorbed, new connective tissue induced, thicker tendon.
- No induction of new host tissue by dermal patch, no evidence of any functional remodeling of the dermal patch at 2 years.

Target Patients Span Rotator Cuff Disease Spectrum

<table>
<thead>
<tr>
<th>Tear Progression</th>
<th>Severe Tendinosis (Failed Conservative Treatment)</th>
<th>High-Grade Partial-Thickness</th>
<th>Small Full-Thickness</th>
<th>Med-Large Full-Thickness</th>
<th>Massive Full-Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>In lieu of standard repair</td>
<td>In lieu of in conjunction with Acromioplasty</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Patients at risk for tear progression, compromised healing potential
- Suboptimal tissue quality, thin tendons
- Patients with a recently failed repair
- Patients where only limited footprint can be restored
- Want to avoid over-tensioning

The Rotation Medical Rotator Cuff System™

<table>
<thead>
<tr>
<th>Scaffold</th>
<th>Novel Instrument Sets</th>
</tr>
</thead>
</table>

- Five Years of R&D
- 100+ Cadaver Labs
- Third-Generation Instrumentation
- Two Options: Arthroscopic and Mini-Open
Unique Scaffold Design Induces Biological Response*

Unique Characteristics:
- Reconstituted, bovine collagen with 90% porosity
- High purity to avoid inflammatory response
- Low strength material not intended for mechanical augmentation
- Permanent strength comes from patient’s induced, remodeled tissue
- Bioabsorbable
- Ability to implant arthroscopically as well as mini-open

* Induces a layer of new, tendinous tissue on the surface and fills in defects

Breakthrough Instruments

- Differentiated and integrated system
- Intuitive and easy
- Reproducible procedure time (average 15-20 min.)
- Disposable components

Demonstrated Healing: Articular-Sided, Partial-Thickness Tear (No Repair)

- Patient pain returned at 12 months; MRI indicated significant bursitis
- Arthroscopic clean-up procedure was performed; histology showed minimal reaction to scaffold
- Six months post clean-up patient was pain-free and MRI showed normal bursa
- Tissue induction and defect filling was not compromised by bursal reaction in this patient
Key Advantages

- Quick procedure, average time ~15 minutes
- Instrumentation enables reproducible placement of the scaffold
- Minimal learning curve with training
- Patient acceptance excellent

Conclusions

- Rotation Medical Scaffold was able to:
 - Induce new tissue similar to tendon on MRI
 - Maintain increased thickness of compromised tendon on MRI (Dr. Ho)
 - Lead to an improvement in Constant, ASES and SF-36 scores comparable to that seen in patients undergoing rotator cuff repair
 - MRI scans at 12 months indicate that there may be induction of healing at the site of the partial-thickness tear in the cuff
 - Rotation Medical Scaffold may offer an alternative treatment option for those patients with a deep partial-thickness cuff tear who are unable to comply with cuff repair rehabilitation
 - Rotation Medical Scaffold did not interfere with routine cuff healing following repair, but in fact enhanced the radiological appearance of the repaired tendon

The Rotation Medical Difference: Addressing Tendon Biology

RM BioInductive Implant

- Implant derived from bovine Achilles tendon, highly purified, highly porous, highly oriented design
- BioInductive implant gradually absorbs within six months, leaving a layer of new tendon-like tissue to biologically augment the existing tendon
- Load sharing implant
RM BiInductive Implant: How It Works

- Proprietary implant design allows for rapid infiltration of fibroblasts and new blood vessels facilitating the formation of new tendon-like tissue – unlike any collagen scaffold on the market today.
- New tissue reduces the peak strain at the site of the tear and creates an environment conducive for healing.
- Strength comes from patient’s own induced tissue, not the implant.

Pre-Clinical Animal Study

- When placed on the superior surface of a rotator cuff tendon (T), the implant consistently induced a layer of highly-aligned, connective tissue (*)
- The implant was completely resorbed by 6 months and replaced by new host tissue.
- Tissue continued to remodel over time without evidence of an inflammatory response.

- At 26 weeks, the new tissue (NT) was well-integrated into the native bone (NB).
- The bony insertion of the new tissue demonstrated evidence of a fibrocartilagenous (FC) component that suggests a normal, direct insertion.

Pre-Clinical Animal Study

- The histologic response demonstrated functional remodeling of the tissue at 52 weeks.
- The maturing tissue histologically resembled tendon-like, (dense, regularly-oriented) connective tissue.
- The mean thickness of the new tissue was 86% of the thickness of the underlying rotator cuff tendon.

AU Clinical Study Overview

- Conducted at five hospitals in Sydney
 - Drs. David Sonnabend, Des Bokor, Ben Cass and Allan Young
- 24 treatment patients and 6 comparison patients
- Treated patients:
 - 15 partial-thickness tears (14 ASD only, 1 ASD plus repair)
 - Ellman scale: 1 small, 5 medium, 4 large; 5 intra-substance (2 large)
 - 9 full-thickness tears (1 ASD only, 8 ASD plus repair)
 - Cofield scale: 1 small, 8 medium
- Comparison patients
 - Partial-thickness tears, acromioplasty only
- Implant attached to bursal surface of supraspinatus
- MRI, ASES, Constant, and SF-36 Scores
 - Pre-operative, 3 months, 6 months, 12 months, 24 months
 - All MRIs read by one independent radiologist, blinded to clinical outcomes
- Mean follow-up time – 38+ months
- Median implantation time -15 minutes

Demonstrated Healing: Bursal Partial-Thickness Tear
(No Repair)

- Tendon thickness = 3.3 mm
- Total thickness = 5.4 mm
- Healing demonstrated at 12 months with a regain of normal tendon and tear filled in.
Demonstrated Healing: Articular Partial-Thickness Tear (No Repair)

Partial-Thickness Tear – Pre-Op

Healed Tear – 12 Months

Tendon Thickness = 2.9 mm

Tendon Thickness = 4.0 mm

Demonstrated Healing: Intra-Substance Partial-Thickness Tear (No Repair)

Partial-Thickness Tear – Pre-op

Healed Tear – 12 Months

Tendon thickness = 6.2 mm

Total thickness = 9.2 mm

Repairs Heal with Increased Thickness and Fully Restored Footprint

Approximate lateral edge of footprint preoperatively

Extract of restored footprint
AU MRI Results for Partial-Thickness and Full-Thickness Tears

- 100% induction of new tendinous tissue in all patients
 - Increase in thickness in both partial and full-thickness tears
 - Mean increase in thickness of 2.4 mm (64%)
 - No increase in thickness in controls
- Filling in of defect observed in partial-thickness tears
 - Observed in all patients in which pre-op MRI showed a clear defect
- Cuff repairs are all intact at two year post-operative MRI evaluation
 - Footprint fully restored in all patients
- No foreign body/inflammatory reaction
- No implant related complications

AU Clinical Study Post-Operative Rehab

Partial-Thickness Tears (No Repair) Treated Post-Operatively Similar To ASD
- Sling discarded when comfortable (max 1 week)
- Graduated progression of motion as tolerated from
 - PASSIVE \(\rightarrow\) ACTIVE ASSISTED \(\rightarrow\) ACTIVE
- Active ROM allowed with:
 - Forward flexion 0 – 100° for first 4 weeks
 - External rotation allowed with arm by side (No ABER for 6 weeks)
 - No resistance exercises for 6 weeks
- No restriction of motion or use of arm after 6 weeks

Full-Thickness Tears (Implant with Cuff Repair)
- Patient treated as for rotator cuff repair
- NO changes to routine post-operative protocol

AU Clinical Scores Show Improvements in Partial-Thickness and Full-Thickness

The differences in all scores compared to pre-op (shoulder Constant scores and Shoulder Pain Visual Analog Scale) are statistically significant (p < 0.05)
U.S. Clinical Study Summary

- Enrollment closed 3/31/2016
- 64 patients
 - Mean age: 56.6 years (Range 33.5 to 74.8)
- 12 implanting surgeons
- Treated patients:
 - 33 partial-thickness tears, no repair
 - (13 Bursal, 16 Articular, 4 Intrasubstance)
 - 31 full-thickness tears, with repair
 - (Medium (1-3 cm): 22, Large (3-5 cm): 9)
- Implant attached to bursal surface of supraspinatus
- MRI, ASES, Constant, and SF-36 Scores
 - Pre-operative, 3 months, 12 months, 24 months
 - All MRIs read by one independent radiologist, blinded to clinical outcomes

Demonstrated Healing: Bursal High-Grade Partial-Thickness Tear (No Repair)

- 55 y.o. Caucasian Male
- Grade 3 (> 50%) bursal tear
- Treatment
 - RM bioinductive implant placed on bursal side of tendon
 - No repair
- Recovery data
 - Returned to work in 7 days
 - Sling removed after 14 days
 - Satisfied with procedure and would recommend it to a friend.

Demonstrated Healing: Articular Partial-Thickness Tear (No Repair)

- 61 y.o. active, retired male with chronic shoulder pain for 15 months previously managed with cortisone injections, PT, and OTC pain medication.

Baseline MRI

- 11 mm x 14 mm, high-grade bursal tear
- 2.0 mm tendon thickness at location of tear
- MRI subacromial, sub deltoid bursitis

3 Month MRI

- 7.5 mm tendon thickness at location of tear; Thickness \(\Delta\) = +5.5 mm
- 100% defect fill-in with new, amorphous, immature material

1-Year MRI

- 9.0 mm tendon thickness at location of tear; Thickness \(\Delta\) = +6 mm
- 100% defect fill-in with new, amorphous, immature material

Newly induced tissue; similar to 3-month MRI, with 75-100% fill-in of tear
Demonstrated Healing: Full-Thickness Tear with Repair

- 71 year old active, retired male with 8 month history of medically managed shoulder pain
- Repaired with a single row 4.5mm anchor

Baseline MRI 3-Month MRI 1-Year MRI

8mm x 12mm full-thickness tear
Mild subacromial, subdeltoid, subacromial

Newly induced inhomogeneous tissue; Mild subacromial, subdeltoid, subacromial

Tissue quality better defined vs. 3-month MRI
Mild subacromial, subdeltoid, subacromial

Clinical Results Compellingly Consistent

Pre-Clinical Study AU Clinical Study U.S. Post-Market Clinical Study

Consistently induced highly-aligned, connective tissue, 86% thicker tendon
64% Thicker tendons in partial thickness tears with no re-tears for FT patients
Early results validating AU study, > 70% increase in tendon thickness

Physician Recommended Rehab Protocols

Partial-Thickness Tears (No Repair)

- Phase I: Immediate post-op (first 5 to 7 days after surgery, prior to starting PT)
 - Use sling for 24 – 48 hours
 - Remove sling 3 to 5 times daily to do pendulum exercises, supine external rotation, supine passive arm elevation, scapular retraction, shoulder shrug
 - Sleep with sling in place
 - May use affected arm in front of body, no lifting of objects over 10lbs., no excessive shoulder extension, no supporting body weight by hands
- Phase II: Intermediate phase (1 to 6 weeks post-op)
 - Should be weaned out of using sling
 - Begin formal physical therapy (ROM, AAROM, AROM, Pulleys, Cane Exercises, Self Stretches)
 - Once patient has pain free full ROM and no tenderness (Initiate isotonic program with dumbbells, PNF)
 - Continue to ice regularly
 - Unless instructed otherwise, okay to drive, allowed to actively use arm for daily living, bathing, dressing, typing on computer, etc.
- Phase III: Active strengthening phase (6 weeks and beyond)
 - Must be able to perform full ROM and no pain or tenderness on examination to proceed to this phase
 - Continue dumbbell strengthening, progress thoracic exercises to 90/90 position for internal rotation and external rotation

Partial-Thickness Tears (Implant with Cuff Repair)

- Patient treated as for rotator cuff repair
- NO changes to routine
Patient Biopsy Case Study

Patient
- Custodial engineer, female 45 years old
- Full thickness tear repair failed
- Very poor, degenerated rotator cuff tissue
- Osteoarthritis in humeral head, required reverse total shoulder arthroplasty but not good candidate
- Performed rotator cuff surgical revision with Rotation Medical implant to potentially generate new rotator cuff tissue and allow for arthroplasty

Patient Biopsy Case Study – Rotator Cuff Repair – October 2014

Patient Biopsy of Degenerated Rotator Cuff Tissue Before RM Implant

Poorly organized collagen, dying cells, poor vascularity

Polarized Light Image

*H&E 50x original magnification
Patient Biopsy Case Study – Hemiresurfacing – April 2015

Comparison Between Sheep And Human – 6 Months Biopsy

- Regularly-oriented collagen, fibroblasts and blood vessels
- No evidence of implant, no inflammatory response
- Sheep and human are essentially identical

Thank You
Bio-Inductive Implant Arthroscopic Technique PEARLS

- Please customize as you see fit -

- Make lateral portal parallel to supraspinatus in both coronal and axial planes or use accessory anterolateral portal.
- Tendency is to place graft too far posterior and medial. Make sure graft comes out lateral enough for proper bone staple insertion.
- Make sure staple gun insertion angle is not more than 45 degrees, separate portals for staples near edge of acromion.
- Pay close attention to maintaining position of bone stapler while switching from punch to staple.