How Can I Get This Bone to Heal

Anjan R. Shah MD
July 23, 2016
Fracture Healing

• Patient Factors
 • Age
 • Smoking
 • DM

• Fracture Environment
 • Open fractures
 • Bone loss
 • Osteopenia/porosis

• Fracture Stability
 • Surgical/Non surgical treatment
Bone Composition

• Cells
 • Osteocytes
 • Osteoblasts
 • Osteoclasts

• Extracellular Matrix
 • Organic (35%)
 • Collagen (type I) 90%
 • Inorganic (65%)
 • Primarily hydroxyapatite $\text{Ca}_5(\text{PO}_4)_3(\text{OH})_2$
Osteoblasts

- Derived from mesenchymal stem cells
- Line the surface of the bone and produce osteoid

Picture courtesy Gwen Childs, PhD.
Osteocytes

- Osteoblasts surrounded by bone matrix
 - trapped in lacunae
- Function poorly understood
 - regulating bone metabolism in response to stress and strain

Picture courtesy Gwen Childs, PhD.
Osteocyte Network

Network probably facilitates response of bone to mechanical and chemical factors
Osteoclasts

• Multinucleated cells whose function is bone resorption

• Parathyroid hormone activates osteoclastic bone resorption

Picture courtesy Gwen Childs, PhD.
Prerequisites for Bone Healing

- Adequate blood supply
- Adequate mechanical stability
Blood Supply

- Long bones have three blood supplies
 - Nutrient artery (intramedullary)
 - Periosteal vessels
 - Metaphyseal vessels

Figure adapted from Rockwood and Green, 5th Ed
Vascular Response in Fracture Repair

• Fracture stimulates the release of growth factors that promote angiogenesis and vasodilation
• Blood flow is increased substantially to the fracture site
 • Peaks at two weeks after fracture
Mechanical Stability

- Early stability promotes revascularization
- After first month, loading and interfragmentary motion promotes greater callus formation
Mechanical Stability

• Mechanical load and small displacements at the fracture site stimulate healing

• **Inadequate stabilization** may result in excessive deformation at the fracture site interrupting tissue differentiation to bone (soft callus)

• **Over-stabilization**, however, reduces periosteal bone formation (hard callus)
Stages of Fracture Healing

• Inflammation
• Repair
• Remodeling
Inflammation

• Tissue disruption results in hematoma at the fracture site
• Local vessels thrombose causing bony necrosis at the edges of the fracture
• Increased capillary permeability
 • Release of Osteoinductive growth factors
• Periosteal callus forms along the periphery of the fracture site

• Intramedullary callus forms in the center of the fracture site

• Chemical and mechanical factors stimulate callus formation and mineralization
Remodeling

- Woven bone is gradually converted to lamellar bone
- Medullary cavity is reconstituted
- Bone is restructured in response to stress and strain (Wolff’s Law)
Local (chemical) Regulation of Bone Healing

- Growth factors
- Cytokines
- Prostaglandins/Leukotrienes
- Hormones
- Growth factor antagonists
Growth Factors

• Transforming growth factor

• **Bone morphogenetic proteins**
 • Fibroblast growth factors
 • Platelet-derived growth factors
 • Insulin-like growth factors
Clinical Use of BMP’s

• Osteo**inductive** proteins
• Used at doses between 10x & 1000x native levels
• Negligible risk of excessive bone formation
• rhBMP-2
• BMP-7 approved for use in nonunions
Hormones

• **Estrogen**
 • Stimulates fracture healing through receptor mediated mechanism

• **Thyroid hormones**
 • stimulate osteoclastic bone resorption

• **Glucocorticoids**
 • Inhibit calcium absorption from the gut causing increased PTH and therefore increased osteoclastic bone resorption
Hormones (cont.)

• Parathyroid Hormone
 • Intermittent exposure stimulates
 • Osteoblasts
 • Increased bone formation

• Growth Hormone
 • Increases callus formation and fracture strength
Local Anatomic Factors That Influence Fracture Healing

• Soft tissue injury
• Interruption of local blood supply
• Bone death caused by radiation, thermal or chemical burns or infection
Systemic Factors That Decrease Fracture Healing

• Malnutrition
 • Reduces activity and proliferation of osteochondral cells
 • Decreased callus formation

• Smoking
 • Cigarette smoke inhibits osteoblasts
 • Nicotine causes vasoconstriction diminishing blood flow at fracture site

• Diabetes Mellitus
 • Associated with collagen defects

• Anti-Inflammatory Medications
 • Cause (at least a temporary) reduction in bone healing
Bone Stimulator
Electromagnetic Field

• Electromagnetic (EM) devices are based on Wolff’s Law that bone responds to mechanical stress: In vitro bone deformation produces piezoelectric currents and streaming potentials.

• Exogenous EM fields may stimulate bone growth and repair by the same mechanism

• Clinical efficacy very controversial
 • No studies have shown PEMF to be effective in “gap healing” or pseudarthrosis
Summary

• Fracture healing is influenced by many variables
 • mechanical stability
 • electrical environment
 • biochemical factors
 • blood flow
Osteoporosis - Scope of the Problem

• 50% Caucasian Women will Fracture
• Most Serious Outcome - Hip Fracture
• 10-20% Excess Mortality at 1 year
• 25% Long Term NH Care
• Only 1/3 Regain Independence
• Psychological and Social Issues
• ↓ Quality of Life
Definitions

- **Insufficiency Fracture**
 Bone Fails with Normal WB

- **Fragility Fracture**
 Fall from a Standing Height or Less
Diagnosis - DEXA BMD

- Relationship (SD) to Norms
- **T-Score** - Reference Standard
 - Comparison to “young normal” adult same sex
- **Z-Score**
 - Comparison to age matched adult same sex
Orthopaedic Diagnosis - Osteoporosis

• **Clinical Presentation**
 • Presence of Insufficiency or Fragility Fracture

• **Bone Mineral Density (BMD)**
 • **2.5 SD** Below the Young Adult Average Value (T)
Further Diagnosis - Osteoporosis

• **Labs** Can Help R/O Secondary Causes
 - CMP, Serum Thyrotropin, Protein Electrophoresis, PTH, Vitamin D, Urine Calcium, Cortisol

• Clinical Utility of Biochemical Markers still Not Proven
FRAX

• Developed by WHO
 • Incorporates Risk Factors + BMD
 • Age, Sex, Ht, Wt, Family Hx, Previous Fx, Steroids, Smoking, EtOH,
 Secondary Causes, RA

• 10-yr Fracture Risk (%)
 • Hip
 • Other Major Fracture

• Online Tool

Published with permission
Osteoporosis International 2008 Vol 19 Issue 10 pp 1395-1408
Pathophysiology - Osteoporosis

• Imbalance in Removal/Replacement of Ca

• Not an Organic Matrix or Mineralization Defect

• Loss of Trabecular Plates, Cortical Thinning

• Structural Weakening

“Mechanical Problem”
Surgical Issues - Osteoporosis

- Difficult Fracture Fixation
 - Poor Screw Purchase
 - Excessive Bowing (Distal Nail Penetration)
- Immobilization or Minimal WB → Bone Loss
- Autogenous Bone Graft Not as Useful
Surgical Treatment Principles - Osteoporosis

• Fixation
 • Length
 • IM Nails, Long plates
 • Augmentation
 • Biologic Cements, Graft, Struts
 • Angular Stability
 • Locked screws with plates/nails
 • Arthroplasty
 • Shoulder, Elbow, Hip, Knee

• Allow WB if Possible
Recognition - Osteoporosis

• Ortho Often the First to See

• Assure All at Risk Patients Have F/U

• Develop a System in Your Hospital
 • Geriatric Program
 • AOA Own the Bone
Fractures Beget Fractures

- Risk of future fractures increases 1.5 - 9.5 fold following initial fracture

- History of fragility fracture is more predictive of future fracture than bone density
Treatment - Osteoporosis

Preventing osteoporosis in all women

- Stop smoking
- Calcium
- Vitamin D
- Medication
- Weight-bearing exercise
- Check your risk factors
- Reduce alcohol

Patients
Treatment - Osteoporosis

• Address Risk Factors
 • Avoid EtOH and Tob

• Ensure Nutrition
 • Ca (1200mg)
 • 600 mg po BID

• Vitamin D (>1500 IU)
 • Other Nutrients
 • Magnesium
 • Silicon
 • Vitamin K
 • Boron
Exercise and Rehab

• Improve Strength, Endurance, Posture
• Maintain Bone Density
• Prevent Falls
• 30 Minutes Moderate Intensity Daily
• Post Fracture Rehab May Reduce Future Fracture
Treatment - Osteoporosis

• Indication for Pharmacologic Intervention
 • T-score < -2.5 without other Risk Factors
 • T-score < -1.0 – 2.5 with other Risk Factors
 • Fragility Fx
 • FRAX Score Hip Fx 10-yr Risk >3%
 • FRAX Score Other Major Fx 10-yr Risk >20%
Pharmacological Therapy

- **Anti-Resorptive Drugs**
 - Hormonal Replacement Therapy: Estrogen/Progestin
 - **Bisphosphonates:**
 - Alendronate, Ibandronate, Risendronate, Zoledronic Acid
 - Selective Estrogen Receptor Modulators: Raloxifene
 - Calcitonin

- **Bone Forming Drugs**
 - Teriparatide
 - Recombinant Parathyroid Hormone
Bisphosphonates

- **Side-Effects**
 - GI
 - Jaw Osteonecrosis (Rare)

- **Atypical Fractures**
 - Risk with Long term use
 - Assess Both femurs
 - Difficult to heal

- **Must weigh risks of use against huge benefits of other Fx Prevention**
 - Hip, wrist, spine
Conclusions

- Osteoporosis: Prevalence – Recognition is Key
- Need Effective Tx to ↓ Fx Rate
 - Nutrition
 - Exercise
 - Fall Prevention
 - Medications
 - Assure Follow Up
- Surgical Improvements Help
Thank You!!!