Treatment of Acute Traumatic Knee Dislocations

Angelo J. Colosimo, MD

Head Orthopaedic Surgeon University of Cincinnati Athletics
Director of Sports Medicine University of Cincinnati Medical Center
Associate Professor of UC College of Medicine
Medical Director Holmes Sports Medicine

Knee Dislocations

• Wide spectrum of severity and associated injuries
• Often secondary to high-energy trauma
• Most commonly reported cause is MVA
• Athletic injuries are the second most common cause of knee dislocations
Knee Dislocations

- High-Energy
 - Usually MVA or fall from a height
 - Dashboard injury common
 - Forced Hyperextension athletic injury
 - Athletic injuries
- Low-Energy
 - Generally from a rotational component
 - Morbid obesity is a risk factor

Knee Dislocation Video

Knee Dislocation Classification

- Based upon the position of the tibia on the femur:
 - Anterior
 - Posterior
 - Lateral
 - Medial
 - Rotary
Anterior Knee Dislocations
- Most common dislocation (30-50%)
- Frequent arterial injury (intimal tear due to traction)
- Hyper-extension most common mechanism of injury

Posterior Dislocation
- Second Most common (25%)
- Due to axial load to flexed knee (dashboard injury)
- Highest rate of complete tear of popliteal artery

Lateral Dislocation
- 13% of knee dislocations
- Due to valgus force
- Highest rate of peroneal nerve injury
- Involves ACL and PCL tears
Medial Dislocations
- Varus force
- Usually disrupts PLC and PCL

Rotational Dislocation
- Posterolateral is most common rotational dislocation
- Usually irreducible

Presentation
- Symptoms:
 - History of major trauma with immediate deformity of knee
 - Knee pain and instability
 - In athletic competition: video review as possible
Presentation

• Appearance
 – No Obvious Deformity
 • 50% spontaneous reduce
 • Subtle signs of trauma (swelling and effusion)
 – Obvious Deformity
 • Immediate reduction
 • Monitor pulses
 • Dimple sign (irreducible posterolateral dislocation)

Reduction of Dislocations

• Do not x-ray obvious deformity!
• Immediate reduction
• Neurovascular injuries common
• Gentle inline traction
• Transport immediately after 2-3 attempts at reduction

Always check neurovascular status of the limb before and after any reduction attempts!
Physical Exam

- Deformity
- Stability
- Vascular Exam
 - Priority to rule out vascular injury
 - Present pulses does not indicate absence of arterial injury
 - Immediate exploration and surgical repair if pulses absent on NV exam

Vascular Exam

- Pulses Present
 - Does not rule out arterial injury
 - Monitor ABI
 - ABI > 0.9 – serial exams
 - ABI < 0.9 – duplex exam or CT arthrography
- Pulses Absent
 - Reduce knee/Re-examine/ABI
 - Immediate surgical exploration
 - >8 hours ischemia – 86% amputation rate

Diagnosis

- Complete and careful physical examination
- Serial neurovascular evaluations!!!!!
- AP and lateral XR
- +/- Arteriogram
- MRI
Imaging

- **RADIOGRAPHS**
 - May be normal if spontaneous reduction
 - Irregular joint space
 - Avulsion fractures
 - Osteochondral defects
- **MRI**
 - Required to define soft tissue injuries

Algorithm Summary

Associated Injuries

- **Vascular**
 - 20-40% in all dislocations
 - 50-60% in AP dislocations
 - Due to tethering of the popliteal fossa
- **Nerve**
 - Usually common peroneal nerve (25%)
 - Tibial nerve less common
- **Fractures**
 - Present in 60%
 - Tibia and Femur most common
Popliteal Artery Injuries

- Occurs in 20-40% of dislocations
 - Can be as high as 50%
- Anterior dislocations cause delayed thrombosis
- Posterior dislocations cause direct intimal fracture or transection of the vessel with immediate thrombosis

Peroneal Nerve Injury

- Less common than vascular injury
- Hyperesthesia at first web space and loss of dorsiflexion of the foot
- Poor prognosis of recovery
- Medial knee dislocations cause traction injuries to the nerve
- Rotational injuries have high incidence of nerve transection

Treatment

- Closed Reduction:
 - Orthopedic emergency
 - On the field reduction
 - Preference of controlled environment
 - Post reduction knee locked in brace at 15-30 degrees of flexion
 - Confirm NV status
Treatment

• Obtain and Maintain Reduction

Treatment

• Surgical Intervention:
 – Arteriogram in OR suite if absent pulses
 – Immediate versus delayed reconstructive procedures?

Treatment

• Emergent surgical intervention
 – Vascular injury repair
 – Open fracture/open dislocation
 – Irreducible dislocation
 – Compartment syndrome
Treatment: Knee Dislocation without Vascular Injury

- Operative repair should be done within 14 days of injury
 - Waiting leads to scarring and contractures and decreased ROM
- If Staging:
 - PLC first
 - PCL before ACL
 - ACL last
- Repair versus Reconstruction

Knee Dislocation Case Presentation

Case Presentation
- 22 y.o. collegiate quarterback sustained an injury to his left knee during a game in early September 2013
- Locked posterolateral knee dislocation after direct blow to anterior aspect of left plant leg.
- Irreducible
What would you do?

What did we do?

• Could not be reduced on-the-field
• Neurovascular status intact
• Transported to ED for reduction under anesthesia
• CT arthrogram - negative
• Kept in hospital overnight for serial neurologic exams then transported home the next day
What did we do?

• Delayed (6 days)
 Simultaneous ACL/PCL/PLC Reconstructions
• PLC Repair and augmented reconstruction using a semi-tendinosis allograft
• PCL – Achilles tendon allograft
• ACL – Semitendinosis and gracilis allograft

Colosimo, Carroll, Heidt, Carlonas

• Presented at AANA, April 2000
• Retrospective study of 11 knee dislocations (7 acute, 4 chronic) with arthroscopically assisted ACL/PCL reconstruction
• 7 with BPTB autograft for the ACL and achilles tendon allograft for the PCL
• 3 patients with ipsilateral and contralateral BPTB autografts for both ACL and PCL
• 1 patient with BPTB allograft for the ACL and Achilles allograft for the PCL

Colosimo, Carroll, Heidt, Carlonas

• Results:
 – Average age – 29.3 years
 – Average Post-operative FU 28.4 months
 – Average Lysholm – 87.7
 – Average anterior active KT-1000 difference was 2.6
 – 10/11 returned to previous level of activity
Harner, et al. JBJS 2004

- 31 patients followed for 24 months
 - 9 (ACL, PCL, PLC)
 - 15 (ACL, PCL, MCL)
 - 7 (ACL, PCL treated only)
- 19/31 were treated in under 3 weeks
- 12/31 were treated chronically (>3 weeks)
- Lysholm scores, ADL scores and sports activity scores were all higher for patients treated acutely.
- Patient satisfaction scores were higher in the acutely treated group

Eranki, Bregg and Wallace 2010

- 20 Total knee dislocations, followed for 2 years
 - 6 with vascular injury
 - 6 with neurological injury
- Pts with initially lower pre-injury level of activity were able to return to their pre-injury status
- 22% of competitive athletes returned to competitive sports
- 38% of heavy level activity returned
- 67% of moderate level returned
- 68% of the 20 patients regularly had problems running at 2 years
- 70% had problems squatting
- 40% had persistent swelling
- 42% had problems with stairs
- Most patients had NO problems locking or giving way
- 80% of patients were satisfied
PLC Augmented Reconstruction

ACL/PCL Video

Complications
- Arthrofibrosis (38%)
- Recurrent laxity and instability (37%)
- Peroneal Nerve injury (25%)
- Vascular Compromise
Thank You!