Platelet-Rich Plasma in the Lower Extremity

Angelo J. Colosimo, MD

Head Orthopaedic Surgeon University of Cincinnati Athletics
Director of Sports Medicine University of Cincinnati Medical Center
Associate Professor of UC College of Medicine
Medical Director Holmes Sports Medicine

Objectives

- To discuss the history and definition of platelet-rich plasma as it pertains to orthopedic sports medicine
- Define PRP
- How it works?
- Indications
- Applications
Introduction

• In Orthopedics we continue the quest to find ways to enhance healing.
• Accelerated healing means quicker return to play

Introduction

• PRP is defined as autologous blood with a concentration of platelets above baseline values
 Normal:
 - 150,000 and 450,000 platelets per microliter (mcL)
 - Males average: 237,000 per mcL
 - Females average: 266,000 per mcL
• In vitro studies suggest that growth factors released by platelets recruit reparative cells and may augment soft tissue repair.

Various Options Available

• There are numerous investigational options available which can enhance and accelerate healing:
 – Amniofix (Primitive cells)
 – ACP (Autologous Conditioned Plasma w/ 2-3x platelets)
 – Stem Cells (Similar to PRP from bone marrow aspirate)
 – Orthokine Therapy (only available in Europe)
 • Kobe Bryant, Alex Rodriguez
 – PRP (Platelet Rich plasma w/ 4-8x platelets)
Available Systems for PRP/ACP

Introduction

- PRP has been utilized in orthopedic surgery for >20 years
- Recent interest in use of PRP in Sports injuries
- Theoretically influence healing of tendon, ligament and muscle

Introduction

- PRP contains growth factors which work in all three phases of connective tissue healing:
 - Inflammation
 - Proliferation
 - Remodeling
- Tendon
 - Increased cell proliferation and total collagen production by tenocytes
 - Increased type I and type III collagen
- Muscle
 - Increased myogenensis and regulate the level of fibrosis
Why PRP?

History of PRP

- Utilized and studied since the 1970s
- Used primarily in maxillofacial and plastic surgery up until recently
- First used in orthopaedics for an adjunct to spinal fusion surgery as bone graft (questionable efficacy for fusions)
- Role in muscle and tendon healing has become popular in the last few years in orthopedics
- Numerous animal studies, basic science studies, and case reports/level IV studies in literature; few controlled trials

Basic Science

- Normal Plasma: 150,000-350,000 platelets/µL in 5 mL
- Definition of PRP: platelet rich >=1,000,000 platelets/µL in 5 mL of plasma
- Platelets:
 - proteins, cytokines, bioactive factors
 - initiate and regulate basic aspects of wound healing
- Plasma: fluid portion of blood that contains clotting factors and other proteins
Basic Science

- PRP: 3 to 5 fold increase in growth factor concentrations contained within α-granules
 - TGF-β, PDGF, IGF-I and II, FGF, VEGF, and endothelial cell growth factor
 - These cytokines play a role in cell proliferation, chemotaxis, cell differentiation and angiogenesis
 - These cytokines are present in normal biologic ratios in PRP vs. BMP
- PRP is not: “platelet gel”, “fibrin glue”, or “platelet concentrate”

Stages of Healing

- Other Bioactive factors in granules (non-growth factors)
 - serotonin, histamine, dopamine, calcium, and adenosine
- Fundamental effects on healing, particularly inflammation stage
- Platelets in PRP are delivered in a clot
 - contains several adhesion molecules that play a role in cell migration
 - clot itself acts as a scaffold
Major Indications for PRP

- Chronic (Tendinopathies)
 - Adjuvant to Non-Healing tissue
 - Introduce Growth Factors to increase rate of healing
 - Stimulate healing in chronic tendinopathy
- Acute (Ligamentous/muscle injuries)
 - Reduce return to play time
 - Accelerate ligament and muscle healing
- Intraoperative Augmentation

Preparing PRP

- Made from anti-coagulated blood; whole blood clots incorporate all the platelets
- First centrifuge: separates red blood cells from white blood cells, plasma, and platelets
- Second centrifuge: further concentrates platelets, producing the PRP separate from platelet-poor plasma

- PRP may/may not be clotted to allow for delivery
 - Degradation begins
 - 70% of stored growth factors are released within 10 minutes
 - 100% within 1 hour
 - Calcium chloride/thrombin to activate
- Lifespan of platelet is 8-10 days
Effects of PRP

Essentially, PRP is adding multiple numbers of the same growth factors/cytokines that are needed in each phase of healing...theoretically speeding up the process
- Specifically aimed at soft tissue: tendon, ligament, muscle and skin
- Effect on tendon: increased cell proliferation and total collagen production; rats are getting back into the maze faster
- Effect on muscle: basic FGF and IGF-I are known cytokines that improve muscle healing

Clinical Applications

- Historically, PRP used for chronic tendinopathies
- Newest literature uses PRP for acute ligamentous and muscle injuries to expedite return to play
- Indications for use have outpaced the basic science and clinical trials validating the efficacy

Clinical Applications

- Chronic tendinopathy
 - Epicondylitis
 - Achilles
 - Patellar tendon
 - Plantar fascia
 - Osteoarthritis
- Intra-operative (bone healing)
 - TKA
 - ACL reconstruction
 - Acute Achilles repair
 - Rotator cuff repair
 - Acute articular cartilage repair
- Acute Muscle Injuries (strains)
Contraindications

- Septicemia, Thrombocytopenia, or Anemia
- Pregnancy
- Platelet dysfunction syndrome
- Hypofibrinogenemia
- History of corticosteroid injection at the treatment site or systemic with in 2 wks
- NSAIDS with in 48 hours
- Recent fever or illness/active infection
- History of cancer/active tumor

Achilles tendinopathy

- Tendonitis vs Tendinopathy:
- Inflammation vs Microtears (mucinoid degeneration)
- PRP is not indicated for paratendinitis alone (if that exists)
- Refractory Achilles tendinopathy pts who have failed multiple PT rounds and other conservative modalities
- Protection with brace advocated after injection, as is cessation of athletic activity
- Gradual return to activities/sport in 10-12 weeks

Results

- Use in Achilles tendinopathy
- de Jonge et al., 2011, AJSM
- Double-blind randomized placebo-controlled study
- 27 in PRP group and 27 in control group
- No statistically significant difference pain score and activity level
Plantar fasciitis

- Chronic refractory plantar fasciitis pts who have failed PT and multiple conservative modalities such as orthoses, NSAIDs, and cortisone shots
- No data on whether PRP is beneficial for pts with tears of plantar fascia
- Immediate WB and PT protocol after injection
- Gradual return to activities over 6-8 weeks, longer for running athletes

Results

- Barrett and Erredge, 2004
- Retrospective, cohort
- 9 patients
- 7/9 with complete pain relief at one year

Patellar tendinopathy

- Demonstrated intra-substance changes on MRI or US; most commonly found at the proximal bone-tendon junction
- Severe symptoms present for more than three months
- Treatment of chronic patellar tendinopathy as an adjunct to rest and PT
- May be used as an alternative to surgical treatment after failed conservative therapy
- “Washout period” recommended for a week at least (no NSAIDs)
Results

- Kon et al., 2009
- Prospective, cohort
- 20 patients
- 70% with marked or complete improvement
- 80% satisfied

Acute Ligamentous Injury

- MCL sprains

Results

- Mandelbaum and Gerhardt, AJSM Nov 2009
- Retrospective
- 22 professional soccer players with Grade II MCL
- PRP in <72 hours from injury
- RTP shortened by 27% compared to control group
MCL injury

- MCL, see disruption of MCL fibers, not a complete tear
- Post PRP

Acute Muscle Injury

- Acute grade 2-3 muscle strains
- Acute severe muscle contusion
- Muscle healing follows same stages as wounds
- May decrease return to play times
- Concerns regarding potential fibrotic healing response

Results

- Sanchez et al., 2009
- Prospective, cohort
- 22 muscle injuries in 20 high level professional athletes
- Full recovery in half the time in all patients
Intra-operative Uses

- TKA: Earliest uses of PRP in Orthopedics were in pts who had undergone TKA
- Primary indication is to promote wound healing and decrease blood loss

Results

- Berghoff et al., 2006
 - 66 TKR pts in control group, 71 in intervention group
 - Autologous PRP fibrin sealant sprayed in knee prior to closure
 - Results:
 - higher postoperative hgb
 - shorter hospital stays
 - less incidence of transfusion
 - fewer narcotics taken
 - better knee ROM at 6 week follow-ups

Intraoperative use in ACL

- Various preparations and uses have been attempted
Results

- Orrego et al., 2008
 - Randomized controlled trial
 - 108 ACL reconstruction patients
 - PRP injected grafts versus non-PRP grafts
 - Enhanced graft maturation process evaluated by MRI
 - No difference in tunnel widening or bone-tendon interface

- Silva and Sampio, 2009
 - Prospective, cohort
 - No difference in MRI signal intensity at 3 mos

Intra-operative Uses

- Acute achilles tendon repair: augmenting primary repair in athletes

Results

- Sanchez et al (AJSM 2007)
 - Case-control
 - 12 patients with Achilles repair
 - compared this group with age-matched controls having primary repair and no PRP
 - Faster return of ROM, jumping and jogging than control group
Use in Osteoarthrosis

- Acute articular cartilage repair/treatment of degenerative joint disease

Results

- Bennett and Schultz (American Journal of Surgery, 1993)
 - first described good results using PRP for articular cartilage lesions; type II collagen synthesis and induction of chondrogenesis from mesenchymal stem cells were reported
- Wu et al (Med Hypotheses, 2009)
 - suggested that PRP can be used as a chondrocyte carrier for treatment of acute cartilage lesions of the knee (no data regarding outcomes as of yet)

Results

- Cugat, 2011
 - 312 with osteoarthritis
 - 3 intra articular injections
 - Quality of life questionnaires at 6 months
 - Improvements in function and quality of life by OA specific clinical assessment instruments
Regulation of PRP in Sports

WADA: World Anti-Doping Agency

- Official Stance:
 - PRP does not demonstrate potential for performance enhancement beyond a potential therapeutic effect
 - Restricted to use in tendons or musculotendinous junction
 - NOT APPROVED in the muscle itself

Regulation of PRP in Sports

- Truth? PRP is unlikely to provide an athletic advantage because unbound IGF-I has too short of a half-life (10 minutes to 16 hrs) to provide a performance advantage
- Also isoform IGF-Iea (found in PRP) is not the isoform responsible for muscle hypertrophy (IGF-Iec/MGF)
- Finally, the dose of IGF-I is sub-therapeutic (300 µg) to produce a systemic anabolic effect (160 mg)

Regulation of PRP in Sports

- Olympic-affiliated and international anti-doping governing bodies have no jurisdiction over professional sports leagues in the US (NBA, MLB, NFL, NHL)
- PRP is not specifically addressed in any of the lists of banned substances to date
- Throughout the literature, there is no suggestion that PRP has a systemic effect or provides a sports advantage; only anecdotal reports exist suggesting that PRP accelerates the repair of an (acutely) injured area
Potential Advantages

- Low chance of rejection (pts own blood)
- PRP can be prepared at the time of care in a simple and relatively inexpensive manner (vs stem cells)

Potential Limitations

- Optimal dose range of PRP has yet to be defined
- Theoretical cancer-like effect of uncontrolled differentiation of cells
- Review of literature shows a clear lack of standardization in the preparation of PRP
- Uniform protocols and quantification of standard platelet yields are necessary
- ACP (autologous conditioned plasma) vs. PRP: is it Arthrex or less WBC’s that make it better?
- Timing and number of treatments

Conclusion

- PRP and PRP-related products have been applied to a diversity of tissues in a variety of surgical fields
- Goal of PRP is to deliver a high concentration of platelet-growth factors to enhance healing response
- PRP may be advantageous in sports medicine, but little evidence other than case series and reports exist to support PRP’s effectiveness
- A significant amount of basic science and clinical research needs to be done to define PRP’s role
References

Thank You!