Extraarticular Distal Tibia Fractures
OTA 43.A

R. Bruce Simpson
Hughston Trauma
Ft Walton Beach FL

Disclosure(s)

• Speaker/family has no contractual relationships with any manufacturer, commercial organization, or for-profit retail organization

• Speaker has received no financial gifts from any manufacturer, commercial organization, or for-profit retail organization, and has no bank accounts in Zurich or the Caymans

• Speaker is for sale, and with the economy in the tank, I think we can work something out cheaply

• Does anyone actually read the disclosures?

Objectives

• Review relevant anatomy
• Discuss difficulties in managing these fractures
• Define options for management
• Tricks and traps
The Problem: Distal 1/4th fractures

- Achieve/maintain reduction
- Control distal fragment (short)
- Avoid soft tissue injury
- Consider subtle fracture extensions
 - INTO THE JOINT
- Need to fix the fibula?
Goals

- Obtain/maintain alignment and length
- Encourage healing
- Allow early motion of adjacent joints
- Avoid complications:
 - Skin
 - Nonunion
 - Infection
 - Stiffness

The Problem
Getting Reduction

- Spiral oblique fractures:
 - Rotational displacement
 - Short (through rotation)
- Both deformities must be corrected for an anatomic fracture reduction
- Barriers:
 - Interposed material
 - Persistent loss of length (lateral column)

Anatomic Features

Distal tibia
- Transition from diaphysis to articular surface
- Orientation of articular surface determines joint position
- Congruence of joint surface critical to longevity
The Problem
Getting Reduction (cont’d)

• Anatomical consideration:
• Transition from diaphysis to metaphysis
• Lack of supportive structures
 – Fibula-
 • Length
 • Rotation

The Problem
Avoiding Additional Soft Tissue Injury

• Thin envelope
• High energy transfer to surrounding tissues
• Poor tissue vascularity
 – Diabetes
 – PVD
 – Burns
 – Abrasions
 – Traumatic laceration

The Problem
Fracture Extensions

• Linear cracks
• Nondisplaced
• Multiplanar

• Does this represent a risk:
 – Malreduction
 – Loss of alignment
The Problem
Fix the Fibula?

- Reduction barrier?
 - Reduction aid
- Stability problem?
 - Stability solution
- Occult syndesmotic ankle injury?
 - Obligated to test the syndesmosis

Evolution of Treatment
No Good Deed Goes Unpunished

Treatment
- Closed reduction/LLC
- External fixator
 - Joint spanning
- Hybrid fixators
 - Juxtaarticular
- Plate osteosynthesis
- IM nails
- MIPPO

Problem
- Stiffness
- Infection, stiffness
- Pin tract infections, septic arthritis, stiffness
- Infections
- Malunions, nonunions
- Infections, nonunions

Closed Reduction
Long Leg Cast

- Difficult to obtain/maintain reduction
- OR/ER?
- Frequent Xray checks
- Re-reductions
- Residual length/rotation deformities
- Ankle/subtalar stiffness
- DVT

Giving birth to a reduction
Pins and Plaster

- K wires transfixing proximal and distal segments
- PTB applied, closed reduction while cast wet
- Problems: pin tract infections, compartment syndromes

Hoffman-Vidal Frame

- Transfixion Shantz pins
- Rigid frame:
 - Ability to distract, compress
 - Allow for early partial weight-bearing

Hoffman-Vidal Frame

Clinical Problems

- Pin tract infections:
 - Cellulitis
 - Ring sequestra
- Soft tissue tethering / contractures
- Delayed / nonunions

Hammer Acta 1985
Modern Joint Spanning Ex Fix

- Provisional
- Keep pins away from the potential incisions
- Limit construct design
- Allow for soft tissue care

Small Wire Fixation

- Advantages:
 - Rigid control of fragments
 - Indirect reduction using olive wires
- Indications:
 - Segmental fractures
 - Intraarticular extension
 - Poor skin
- Disadvantages:
 - Pin tract infections
 - Septic arthritis
 - Joint stiffness

Closed Reduction/IM Nail

- Anatomic/mechanical challenges
- Assistive devices:
 - Triangle
 - Distractor
 - Blocking screws
 - ORIF Fibula
Historic AO Principles

Surgical Strategy

• Open extensile approach
 – Anteromedial
• Anatomic reduction with resolution of fracture lines
 – Primary bone healing
• Dynamic compression plates and screws
 – Compression at fracture site
• Interfragmentary compression
 – Lag screws

Early US Experience

Open Fixation Distal Tibia Fractures

Teeny et al

• Distal tibia fractures
• AO principles:
 – Early operative management
 – Rigid internal fixation
• Significant infection rate (11-30%)
• Wound breakdown

Open Reduction

Modern Fixation Strategies

• AO Teaching (Problems)
• Early US Experiences (Problems)

• Second generation plating
 – MIPPO
 – Anatomically contoured plates
 – Alternative surgical approaches
 – Facilitative adjuncts to reduction
ORIF Current Philosophy

- Avoid large incisions
- Relative stability
 - Locked plates
 - Internal Ex Fix
- Adjunctive reduction
- Advantages:
 - Early motion
 - Rigid fixation
 - Anatomic reduction

Minimally Invasive Technique

Small medial incisions
 - For insertion and positioning
- Non-destructive plating
 - Leave periosteum intact
 - Cautious skin handling / closure
- Indirect reduction
 - Plate will not reduce the fracture

Percutaneous Plating

Early Experiences

- Initial implants
 - ½ tubular plates
 - Pounded flat
 - 4.5mm screws
 - Indirect reduction
 - Small incisions
- Problems:
 - 20% superficial infection rate
 - Prominent hardware
 - Focus on implant rather than reduction
MIPPO

• Minimally invasive
• Small incisions
• Relative stability
• Requires facilitated reduction:
 – Push-pull
 – Distractor
• Disadvantages:
 – REDUCTION
 – Avoid OIF

Example:
Open Comminuted Tibia and Fibula Fx

Minimally Invasive Plating
Definitive Fixation
Anterolateral Distal Tibial Plate

- Distal 1/3 and Pilon Fx
- Lateral incision
- Spares medial skin
 - Earlier ORIF?
- Can fix fibula through same incision
 - Ex fix
 - Delayed ORIF

Anterolateral Incision

- Grose JOT 2007
- Anterolateral incision
- 44 pts
- 93% anatomic reduction
- 2 infections (4.5%)

Example
Fibula

Fix or don’t?

• Aid in reduction:
 – Length
 – Coronal plane
 – Rotation
• Aid in stability
• Offers an excuse to do simultaneous fasciotomy
• Test for syndesmotic stability

Suggestions:

• Become familiar with means of facilitated reduction
 – Femoral distractor
 – Blocking screws
 – Mini ORIF
 – Fixing the fibula
• Modern surgical approaches, implants

Summary

• Methods evolving
• Goals unchanged
 – Anatomic alignment
 – Stable reduction
 – Allow early ankle motion
 – Minimize skin/soft tissue complications

The device is not designed to replace the surgeon. You still have to reduce the fracture.