Reverse Shoulder Arthroplasty
Indications and Results

David M. Dines MD
Hospital for Special Surgery
Weill Cornell Medical College
Current Concepts Shoulder and Elbow Surgery
Tampa 2016

Disclosures: Biomet Inc., VuMed Inc.

Reverse TSA for CTA

- Grammont 1991
- CTA
- Nothing else works
- Dramatic functional improvements

Presentation will not include discussion of off label or investigational use of products or treatments
Newer Designs

- Improved technology and understanding
- Still remain true to principles of Grammont
- Diminishing Complications
 - Scapular notching
 - Instability
 - Component failure
- Increasing indications and younger age groups

RSA increasing indications and lower age limit

- Yamaguchi JSES 2011
- Gulotta et al JSES 2015
- Hetterich et al 2016
- Shoulder arthroplasty exponential growth
- RSA>>TSA>>>HA
- Younger Patients

RSA
- Expanded indications
- Younger
- Large S not RC
- Revision substantial
- RC () OA
- Glenoid Deformity

Can we expect more revisions?

Recognition of Deformity

Patient specific guides and components

Lead to better results

- Imaging: CT/3D
- Patient Specific Guides
- Patient specific implants
- Expect better outcomes in more difficult pathologic situations
Historic Indications

- Primary
 - CTA 'pseudo-paralysis'
 - RA
- Trauma
 - Sequelae of Fracture
- Revision
- Tumor

Emerging Indications

- Acute trauma
- Chronic instability
 - Walch B2
 - Chronic Anterior Dislocation
 - Chronic Rotator Cuff Failure
 - RA as primary choice-younger
 - Primary Osteoarthritis

Each new indication has its own unique issues to be considered

RSA for Acute Trauma; It's still all about tuberosity reconstruction

Transverse and longitudinal fixation
RSA for Walch B2

Technique options

- Neoglenoid retroversion >27 degrees and subluxation >80%
 - Standard Eccentric Reaming for Baseplate
 - Humeral Head Allograft and Baseplate fixation
 - Augmented Baseplate

Tom Wright MD

RSA for Massive/ Irreparable RCT

Risk vs.. Reward vs.. Recovery

- Uncertain healing
- Prolonged recovery/ immobilization
- Limited activity

- More invasive
- More predictable results
- Still need ER
- More possible Cx
- Faster (easier?) recovery

Younger
 - Durability
 - Allowed Activity

RSA

It’s certainly not just CTA anymore!!

- Increasing indications
- Younger patients
- Hopefully much greater longevity!!!
Materials and Methods

- 198 patients
- Ave age 69 (49-93)
- F/u 34mos (21-72)
- Female 123 Male 75

Indications
- CTA 124
 - RCT irreparable 13
 - TRAUMA 24
 - Acute 13
 - Chronic 11
 - Revision 32
- OA glenoid deformity/poor cuff 18

<table>
<thead>
<tr>
<th>Dx</th>
<th>#</th>
<th>UCLA</th>
<th>FE</th>
<th>ER</th>
<th>Cx (n=)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTA</td>
<td>111</td>
<td>23.5</td>
<td>112</td>
<td>22</td>
<td>12 (stn=9)</td>
</tr>
<tr>
<td>Irreparable RCT</td>
<td>13</td>
<td>26</td>
<td>128</td>
<td>25</td>
<td>1</td>
</tr>
<tr>
<td>OA bone deformity/poor cuff</td>
<td>18</td>
<td>26</td>
<td>138</td>
<td>34</td>
<td>0</td>
</tr>
<tr>
<td>TRAUMA</td>
<td>24</td>
<td>21</td>
<td>110</td>
<td>30</td>
<td>4</td>
</tr>
<tr>
<td>REVISION</td>
<td>32</td>
<td>19.5</td>
<td>104</td>
<td>34</td>
<td>6</td>
</tr>
</tbody>
</table>

Complications (n=23) 11.5%

- Infection 2
 - Revision primary TSA
 - P. acnes Instability 2
 - Both late and traumatic
 - Acromial Fx / Deltoide 3
 - Humeral Tray Failure 3
 - Humeral Component Looseing 2
 - Scapular Notching 1 (4.5%)
 - Periprosthetic Fx 1
 - Traumatic Glenoid losseing 1
 - Prostate cancer mets to scapula
Results RSA

- Sperling et al JBJS 2014
 - Retro 44 pts
 - 76(59-92);
- Indications
 - CTA 33
 - TRAUMA 2
 - AVN 6
 - RA 3

- Results
 - NEER LIMITED
 - GOALS E 27, S 15, F 2
 - NONE LOOSE
 - SCAP NOTCH 6.8%

Results of RSA in Emerging Indications

COMPARISON RESULTS-RSA V HA for Fx

- Ferrel et al J Orth Trauma 2015
 - Systematic review
 - No PPTG
 - RSA: CT-GC, More Cx
- Acevedo (Williams) et al JSES 2014
 - RSA may be better recovery, longevity
- Sebastia et al JSES 2014
 - RSA resulted in better pain and function and lower revision rate. Revision from RSA to RSA does not appear to improve
 - Cazenueve et al JBJS 2010/11
 - 10 year FDI
 - Reverse better constant score, more Cx
- Reverse overall slightly better outcome
- HA better if tuberosity healed
- Reverse more complications
- notching and long term outlook?
RSA for OA with Biconcave Glenoid

- Wall et al JBJS 2007
- Mizuno, Denard, Raiss Walch JBJS (AUG13)
- Younger Patients
- Better ROM and Constant scores
- Cx and Scapular notching
- Durability???

\[\text{Conclusion: viable option in Walch B2 with severe instability and glenoid retroversion} \]

Results of RSA for Massive RCT

Mulieri et al (Frankle) JBJS 2010
- RSA in 60 pts. Massive RCT without OA
- 3 groups:
 - pseudoparalytic without anterosuperior escape
 - pseudoparalytic with anterosuperior escape
 - >90 degrees fwd elevation
- Improved pain and function in all 3 groups

Ek et al. JSES 2013
- 35 pts ≤ 65 years old
- Irreparable RC tears (w/ and w/o Arthritis)
- Subjective and objective outcomes improved
- 38% complication rate

Results of RSA for Massive RCT

- RSA for CTA best cohort group results
 (Boileau, Walch, Favard, Gerber, Frankle)
- RSA results equal in CTA and Massive RCT without arthropathy
 (Werner et al. JBJS 2005)
- Primary RSA better than RSA after failed repair in both groups
 (Cuff et al JBJS 2008, Wall et al. JBJS 2007)
Results of RSA for Massive RCT
But!!!

- Reverse shoulder arthroplasty for massive rotator cuff tear: risk factors for poor functional improvement
 Hartzier et al (Frankle) JSES 2015

- Young age
- Preoperative function
- Neurologic dysfunction

BE WARY OF COPERS!

- Boileau et al
 - No difference in outcome RSA for CTA or Massive RCT without arthropathy
 - Those with “preserved preoperative motion had poorer outcomes”
 - FE 146 degrees vs. 132 degrees
 - Lower CS
 - Not as satisfied

Conclusions

- RSA indications increasing
- Results have improved with better technology and understanding
- Complications have diminished in medium-term F/U
- Durability still issue as younger patients with more active lifestyles are being indicated for RSA more frequently
Thank you!

Glenosphere

- Base-plate design
 - 2 diameters CTA Females
 - Central 6.5 Screw
 - Peripheral Screws
- Glenosphere Size and lateralizing options
 - 36/41 mm in 0, +3, +6 offset
 - Eccentricity 0-4 mm

Humeral Components

- Humeral Stems
- Convertible
- Micro, mini, standard Fx and Long
- Proximal porous ingrowth- smooth distal
How We Prevent Scapular

- Inferior glenosphere tilt
- Inferior glenoid position
- Larger glenosphere
- Lateralization of glenosphere (or BIO RSA)
- Eccentric glenosphere
- Increased inclination angle
- Humeral tray
- Combined lateralization (glenosphere and humeral component)

Design Concepts—Ideal System

- Most advantageous sizing
 - prevent instability
 - deal with bone loss
- Stability Without Cement
- Glenosphere and baseplate
 - Minimize Potential For Loosening
 - Minimize Scapular notching
- System Flexibility and Interchangeability

A Platform System—Builds From

- All Stems, Glenoids, Heads Interchangeable
Flexibility to Handle All Options, All Anatomy

Must Recognize Bone Deformity
CTA
E3-Severe postero-superior glenoid bone loss

Be prepared to deal with it!

- Imaging: CT/3D
- Patient Specific Guides
- Still a function of surgical technique
- Recognition of deformity
- Exposure
- Clear all soft tissue without damage
- Exposure and retractors cannot block instrument
RSA Technique

- Guide wire placement
- Ream over guide
- Baseplate implantation

RSA for Walch B2

* RSA + Bone graft if cannot correct retroversion to 10 degrees
* Amenable with baseplate fixation in compression
 - ALLOGRAFT
 - AUTOGRAFT

Courtesy Tom Norris
BIO-RSA Technique for Walch B2 Glenoid

RSA Technique

- Glenosphere
- Inferior offset
- Inferior tilt
- Lateral offset
- Press-fit humeral component in anatomic retroversion "Convertible"
- On-lay Humeral tray
- Subscapularis repair

Avoid scapular notching
Bone graft if glenoid deficient

* Great stresses
* Graft balanced and secure - cortical surfaces - Norris

Humeral Head graft reversed and placed in superior glenoid defect

Reverse Shoulder Arthroplasty

* Many different designs
* Humeral component and polyethylene Cup designs
 * Intramedullary designs
 * Most cemented
 * Some convertible
 * Centralized
 * On-lay Extramedullary design
 * Most cementless
 * Convertible
 * Alternative humeral biomechanics