Design Implications
A 12 Year Review of a Lateralized Implant

Brent C. Stephens, MD
Peter Simon, PhD
Rachel Graze, BA
Kaitlyn N. Christmas, BS
Geoffrey P. Stone, MD
Adam Lorenzetti, MD
Mark A. Frankle, MD

Disclosure

Dr. Frankle is a paid consultant for and receives royalties from DJO Surgical

Background

- Reverse shoulder arthroplasty (RSA) was FDA approved in 2003 for treatment of cuff tear arthropathy (CTA)
- Indications continue to expand
 - CTA
 - 4 part fracture
 - Type B2 glenoid
 - Revision of failed arthroplasty
Background

• Over 22,000 RSA performed in 2011
• Projected to grow to over 80,000 in 2020
• Revision rate and outcome following revision is unknown

Purpose

1. To evaluate the rate of RSA revision as it is influenced by primary diagnosis & implant design features
2. To discuss surgical management of failed Reverse Shoulder Arthroplasties
3. To report outcomes following revision of patients with a minimum of 24 month follow-up

Study Design

<table>
<thead>
<tr>
<th>PRIMARY INDICATIONS for RSA PERFORMED by M.A.R. 2000 - 2012</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cuff Tear Arthropathy</td>
<td>649 (45.8%)</td>
</tr>
<tr>
<td>Failed Rotator Cuff Surgery</td>
<td>294 (20.7%)</td>
</tr>
<tr>
<td>Failed Hemiarthroplasty</td>
<td>251 (17.7%)</td>
</tr>
<tr>
<td>Failed Total Shoulder Arthroplasty</td>
<td>105 (7.4%)</td>
</tr>
<tr>
<td>Fracture (acute/malunion)</td>
<td>79 (5.6%)</td>
</tr>
<tr>
<td>Failed ORIF</td>
<td>14 (1%)</td>
</tr>
<tr>
<td>Other</td>
<td>26 (1.8%)</td>
</tr>
<tr>
<td>Total</td>
<td>1418</td>
</tr>
</tbody>
</table>

Of these, we identified 88 patients requiring removal or exchange of components
Study Design

For each of the 85 patients, we determined:
• Indication to reoperate
• Intraoperative management
• Outcome following revision surgery

Indications placed into seven categories:
1. Glenoid baseplate failure (35/85)
2. Glenosphere dissociation (8/85)
3. Humeral dissociation (10/85)
4. Glenohumeral dislocation (6/85)
5. Aseptic humeral loosening (4/85)
6. Periprosthetic fracture (6/85)
7. Infection (18/85)

*2 patients fit into two categories

Modes of Failure:
Baseplate Failure
• Radiographic changes in the baseplate position over time combined with presence of broken screws (35/85)
 • January 2000 – January 2004 (31/85)
 • 4 • 3.5mm non-locking peripheral screws (31/242)
 • February 2004 – December 2012 (4/85)
 • 4 • 5.0mm locking screws (4/1176)
Modes of Failure: Glenosphere Dissociation

- Isolated failure of the Morse taper engagement to the baseplate (8/85)
 - January 2000 – August 2005 (5/85)
 - no central hole in glenosphere (5/381)
 - August 2005 – December 2012 (3/85)
 - central hole present in glenosphere (3/1037)

Modes of Failure: Humeral Dissociation

- Radiographic separation of metaphyseal shell from humeral stem (10/85)
 - January 2000 – June 2005 (8/85)
 - modular polyethylene socket (8/392)
 - June 2005 – December 2012 (2/85)
 - modular metal metaphyseal shell with a polyethylene insert (2/1026)

Modes of Failure

- Aseptic Humeral loosening
 - Radiographic grossly loose stem without signs of infection (4/85)
Modes of Failure

- Periprosthetic Fracture
 - Fractures requiring removal or exchange of the reverse prosthesis (6/85)

- Glenohumeral dislocation
 - Radiographic loss of articulation between the glenosphere and humeral socket (6/85)

- Elevated preoperative inflammatory markers (CBC, ESR, CRP)
- Physical exam (erythema, drainage, sinus)
- Intraoperative findings
- Pathology
 - Frozen section
 - Culture
- 18/85 patients
Indications categorized when at least 2/3 reviewers agreed upon the primary reason for revision

Methods: Surgical Management

Operative reports were reviewed to understand surgical strategies utilized by the senior author

Methods: Outcome Measures

- ASES
- Simple Shoulder Test (SST)
- Range of Motion
Results

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Female</td>
<td>853 (60.2%)</td>
<td>48 (56.5%)</td>
</tr>
<tr>
<td>Male</td>
<td>563 (39.7%)</td>
<td>37 (43.5%)</td>
</tr>
</tbody>
</table>

Age

| | 69.8 ± 10.3 | 66.7 ± 10.7 |

Primary Diagnosis

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Failed CTA</td>
<td>649 (45.8%)</td>
<td>26 (4%)</td>
</tr>
<tr>
<td>Failed RCR</td>
<td>294 (20.7%)</td>
<td>18 (6.1%)</td>
</tr>
<tr>
<td>Failed HA</td>
<td>251 (17.7%)</td>
<td>26 (10.4%)</td>
</tr>
<tr>
<td>Failed TSA</td>
<td>105 (7.4%)</td>
<td>8 (7.6%)</td>
</tr>
<tr>
<td>Proximal Humerus Fracture</td>
<td>79 (3.8%)</td>
<td>3 (3.8%)</td>
</tr>
<tr>
<td>Failed ORIF</td>
<td>14 (1%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Other*</td>
<td>26 (1.8%)</td>
<td>4 (15.4%)</td>
</tr>
</tbody>
</table>

Total

| | 1418 | 85 |

Revision Indications Over Time

Revision Indications

- Baseplate failure
- Humeral Dissocation
- Glenosphere Dissociation

Design modification

- Metal methaphyseal shell modular socket with PE insert

Results

<table>
<thead>
<tr>
<th>Indication</th>
<th>Implant design iteration</th>
<th>Failed/Total</th>
<th>Percentage failed</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Failed BP non-locking screws</td>
<td>31/242</td>
<td>12.8%</td>
<td></td>
<td>p < 0.0001</td>
</tr>
<tr>
<td>Failed BP locking screws</td>
<td>4/1176</td>
<td>0.3%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Humeral dissociation all PE modular socket</td>
<td>2/1057</td>
<td>0.2%</td>
<td>p = 0.000751</td>
<td></td>
</tr>
<tr>
<td>Humeral dissociation metal methaphyseal shell modular socket with PE insert</td>
<td>2/1057</td>
<td>0.2%</td>
<td>p = 0.000751</td>
<td></td>
</tr>
<tr>
<td>Glenosphere dissociation without central hole</td>
<td>5/992</td>
<td>1.5%</td>
<td>p = 0.042309</td>
<td></td>
</tr>
<tr>
<td>Glenosphere dissociation with central hole</td>
<td>5/1026</td>
<td>0.5%</td>
<td>p = 0.042309</td>
<td></td>
</tr>
</tbody>
</table>
Results – Surgical Approach: Baseplate Failure

- Removal of glenosphere & baseplate.
- Broken screws were left in the glenoid.
- A new baseplate with 5.0mm locking screws was implanted in 34/35 patients.
- Glenosphere was exchanged for a larger size in 29/34 patients.
- 1 patient required conversion to HA due to glenoid bone loss.

Results – Surgical Approach: Glenosphere Dissociation

- Isolated glenosphere exchange performed for 3/8 patients.
 - 2/3 kept the same size, 1/3 got a smaller size.

Results – Surgical Approach: Humeral Dissociation

- Exchanged to a new metal-backed socket.
Results – Surgical Approach: Dislocation

- Glenosphere exchanged to larger sphere in 4/5 patients.

Results – Surgical Approach: Humeral Loosening

- All patients with humeral loosening had bone loss extending into the metaphysis.
- 3/4 patients received proximal humeral allograft secured with cerclage wires.
- A longer humeral stem was then cemented in place.

Results – Surgical Approach: Periprosthetic Fracture

- Removal of humeral component & placement of cerclage wires around fracture site.
- Longer cemented humeral stem was implanted.
- Proximal humeral allograft utilized in 3/6 patients.
Results – Surgical Approach: Infection

- 13/18 one-stage revisions
- 5/18 two-stage revisions
- 3 patients elected not to undergo second stage
- 1 patient had recurrent infection after single stage revision

Results: Outcomes

<table>
<thead>
<tr>
<th></th>
<th>Pre-op</th>
<th>Post-op</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASES Total</td>
<td>45.6</td>
<td>52.9</td>
<td>0.047</td>
</tr>
<tr>
<td>FF</td>
<td>74</td>
<td>97</td>
<td>0.011</td>
</tr>
<tr>
<td>AB</td>
<td>71</td>
<td>91</td>
<td>0.013</td>
</tr>
<tr>
<td>ER</td>
<td>22</td>
<td>25</td>
<td>0.954</td>
</tr>
<tr>
<td>IR</td>
<td>2.6</td>
<td>3.4</td>
<td>0.126</td>
</tr>
<tr>
<td>SST Total</td>
<td>2.6</td>
<td>4.4</td>
<td>0.003</td>
</tr>
</tbody>
</table>

Conclusion

- Implant modifications have led to decreasing instances of baseplate failure, glenosphere dissociation, & humeral dissociation
- Patients exhibit significant clinical improvements following revision