Management of Glenoid and Humeral Bone Loss in Shoulder Instability

DISCLOSURES

1. Royalties: Arthrex, Elsevier
2. Consultant: Arthrex
3. Miscellaneous Support: Arthrex
4. Basic Science/Research Support: Arthrex, Smith and Nephew, Ossur, Miomed, DJOrtho, Conmed Linvatech, Athletico
5. Editorial Board: Orthopedics Today (Chief Medical Editor), Journal of Shoulder and Elbow Surgery, Techniques in Shoulder and Elbow, Techniques in Sports Medicine, Sports Health, Orthopedics
6. Publisher Support: Elsevier (Textbook), Orthopedics Today

GOALS of Shoulder Replacement

Relieve pain

Improve motion

Improve function
Management of Glenoid and Humeral Bone Loss in Shoulder Instability

How Can We Achieve GOALS?

Exposure

Anatomic Reconstruction

Restore G-H Relationships

Fixation

Anatomic Reconstruction

- Understand the *normal* proximal humerus anatomy
- Use a prosthetic system that *adapts* to the patient’s anatomy

Surface Arc

Surface arc = \(180 - 360\arcsin(1-\text{HH/RC})/\pi\)

\[
\text{HH : RC} = 75 \pm 0.4
\]

Surface Arc = 150° ± 5°
Management of Glenoid and Humeral Bone Loss in Shoulder Instability

Articular Surface

Diameter of Head
- Variable
- 36.5mm to 51.7mm

Thickness of Head (Head Height)
- Variable
- 12mm to 18mm

Math:
50 mm Diameter = 25 mm Radius
25 x .75 = 19 mm
HHeight = 19 mm

Surface arc = 180 - 360 arcsin(1-HH/RC)

Head Size

Ratio of Head Height and Radius of Curvature = .75

Orientation of Articular Surface

INCLINATION

Variable
114° - 147° (mean:130°)

Anthony A. Romeo, MD
Rush University Medical Center
Chicago, Illinois USA
www.shoulderelbowdoc.com
Orientation of Articular Surface

RETROVERSION
- Variable
- 6.5° - 47.5° (mean 17.9°)

OFFSET of the Humeral Articular Surface

- **Medial Offset**
 - Range: 2.9mm to 10.6mm
 - Mean: 6.9mm
- **Posterior Offset**
 - Range: -0.8mm to 6.1mm
 - Mean: 2.6mm

Humeral Anatomy

VARIABLE
- Inclination
- Retroversion
- Medial Offset
- Posterior Offset

Anthony A. Romeo, MD
Rush University Medical Center
Chicago, Illinois USA
www.shoulderelbowdoc.com
Management of Glenoid and Humeral Bone Loss in Shoulder Instability

FIXED

RATIO:
Diameter of Curvature
Humeral Head Height
(Thickness)

HH : RC = .75 ± 0.4

The Goal Achieved:
Bilateral Total Shoulder Replacements

Humeral Component
Evolution?

Should We Change Anything?

Survivorship of the humeral component in shoulder arthroplasty

1584 Shoulder Arthroplasties → Neer and Cofield
- 108 revisions
- Survival 94.8% at 5 years
- Younger age, male gender, replacement for posttraumatic arthritis, uncemented components increased likelihood of component failure

Long Stem

Long-stemmed humeral components in primary shoulder arthroplasty

27 Shoulder Arthroplasties
- 9 year follow up
- 70% satisfaction, Constant score 57 points
- No complications
- 22 (69%) radiolucency, 12 (32%) endosteal erosion, 7 (19%) at risk for loosening.

Anthony A. Romeo, MD
Rush University Medical Center
Chicago, Illinois USA
www.shoulderelbowdoc.com
Management of Glenoid and Humeral Bone Loss in Shoulder Instability

Radiographic survival in total shoulder arthroplasty

Humeral Stem: 3% “At Risk” for Loosening
No Revisions for Loosening

Cranial Migration of Humerus:
Total: 69%
37% Mild
44% Moderate
19% Severe
No difference in outcomes

Results of Cemented Total Shoulder Replacement with a Minimum Follow-up of Ten Years

Humeral Stem: No Loosening

Short Stem Implants

Anthony A. Romeo, MD
Rush University Medical Center
Chicago, Illinois USA
www.shoulderelbowdoc.com
Total Shoulder Arthroplasty Utilizing Mini-Stem Humeral Components: Technique and Short-Term Results

Biomet Mini Stem - First 49 cases 67yo (46-83) 2 yr fu
TSA Uncemented Stems 52-66mm Length
UCLA 27.5 Constant 91
11/49 1mm radiolucent line. No subsidence. 5/49 placed in varus

Early-Term Results of Total Shoulder Arthroplasty Utilizing a Mini-Stem Humeral Component
Dines et al 2013 AAOS(Paper 573)
100 Patients. Age 67.8 (46-87). F/u 3.6 years (2 to 5.3).
The stems range from 79 to 83 mm. UCLA 27.5 Constant 91
3 reoperations (Anterior Instability(subscap rupture), Posterior Instability, infection)
8% RLL <1mm, < 3 Zones

Stemless Implants

Does size matter?

Anthony A. Romeo, MD
Rush University Medical Center
Chicago, Illinois USA
www.shoulderelbowdoc.com
Why Consider Short Stems

– Decrease Intraoperative Humerus Fractures (1.5%)

– Decrease Postoperative Humerus Fractures (2.3%)

– Potential Bone Preservation

– Easier Revision

Importance... Periprosthetic Fractures Associated with Primary Total Shoulder Arthroplasty and Primary Humeral Head Replacement

A Thirty-three-Year Study

Surgically challenging with less optimal outcomes

Other Long Term Concerns

– Proximal Humerus Bone Loss (Stress Shielding)

– Humeral Stem Loosening

Anthony A. Romeo, MD
Rush University Medical Center
Chicago, Illinois USA
www.shoulderelbowdoc.com
Revising the “Well-fixed” Stem

Can Lead to Limited Recon Options

LGN Cisternos JSES 2015

Why Less May Be More?

“Stemless arthroplasty arose from a desire to avoid stem-related complications, provide ease of revision, and maintenance of optimal bone quality in revision operations.”

What we are not talking about...

Anthony A. Romeo, MD
Rush University Medical Center
Chicago, Illinois USA
www.shoulderelbowdoc.com
Management of Glenoid and Humeral Bone Loss in Shoulder Instability

Conclusions

• 40 revision shoulder arthroplasties performed
 • 17 from stemmed arthroplasties
 • 23 from surface replacement arthroplasties

• Stemmed Arthroplasty Revision Group:
 • Higher operative time
 • Increased Need for humeral osteotomy
 • Increased Need for structural allograft
 • Increased number of intraoperative fractures

• Higher Constant Score in the Surface Replacement Group

• STEM DOES MATTER!

Conclusions

• 26/427 patients with creation of a humeral window
 • No malunion or loosening

• BUT HOW DO THESE PATIENTS DO CLINICALLY?

Other considerations

• Implant Stability

• Ease of Implantation

• Clinically different?

Anthony A. Romeo, MD
Rush University Medical Center
Chicago, Illinois USA
www.shoulderelbowdoc.com
Management of Glenoid and Humeral Bone Loss in Shoulder Instability

Stress Shielding

Computer Modeling Study
- 3 Reconstructed (standard, short, stemless) finite element models from CT
- Quantified average bone stress
- Short stem and standard had significantly reduced stress compared to the normal humerus and stemless models (p<0.001)

Putting it all together
- Less Proximal Bone Loss
- Osseointegration is satisfactory
- Stress Shielding Improved
- Revision may be easier
- OUTCOMES?

Stem-less Humeral Arthroplasty

>10,000 ECLIPSE implanted (Europe 05, Canada 09)
NOT Available in USA

Anthony A. Romeo, MD
Rush University Medical Center
Chicago, Illinois USA
www.shoulderelbowdoc.com
Eclipse

Level IV Case Series
- 78 patients
- Mean age 58
- 72 month f/u

Outcomes
- Constant score 38% to 75.3% (p<0.001)
- Improved ROM
- No change in outcome depending on bone quality
- No change in outcome hemi vs. total??
- 12.8% complication rate
- Revision Rate 9% (None for loosening)

Conclusion:
- Function and radiographic results equal to 3rd and 4th generation stems
Management of Glenoid and Humeral Bone Loss in Shoulder Instability

Convertability?

Prosthetic Head = Patient's Anatomy

Key: Fixed ratio between radius of curvature and head height

Does the length matter?

Increasing use of short stems or stem-less will continue…

Anthony A. Romeo, MD
Rush University Medical Center
Chicago, Illinois USA
www.shoulderelbowdoc.com
Future

✓ Is there an ideal patient for stemless vs short stem?

✓ How does this alter revision?

✓ What do we do with our younger high-demand?

✓ Reverse short stem / stemless?

Thank you!

Anthony A. Romeo, MD
Section Head, Shoulder and Elbow Service
Professor, Dept. of Orthopaedic Surgery
Rush University Medical Center
1611 W. Harrison St., Suite 300
Chicago, IL 60612
312-243-4244
Anthony.Romeo@rushortho.com
www.ShoulderElbowSports.com

Anthony A. Romeo, MD
Rush University Medical Center
Chicago, Illinois USA
www.shoulderelbowdoc.com