Partial Thickness Rotator Cuff Tears

Anil K. Gupta, MD, MBA
Toledo Orthopaedic Surgeons
Assistant Professor
University of Toledo Dept. of Orthopaedic Surgery
E-CORE Orthopaedic Research Laboratory
Team Physician
University of Toledo

Disclosures

• Editorial Board
 – Journal of Arthroscopy and Related Surgery
• Reviewer
 – American Journal Sports Medicine
• Research Support
 – Arthrex, Inc.

Problem with PTRCTs

• Lack of high-quality studies
• Most RCT studies evaluate full-thickness tears
• Natural history not well understood
• “Painful” – more ways than one!
Prevalence

- Cadaveric and Imaging Studies
 - 13-32%
- Age Dependent
 - MRI studies
 - <40yo – 4%
 - >60 – 26%
 - >70 – 80%
- Elite Overhead Athletes
 - 40%

Pathogenesis

- Intrinsic Factors
 - Hypocellularity
 - Fascicular thinning
 - Reduced blood supply
- Extrinsic Factors
 - Subacromial impingement
 - Glenohumeral instability
 - Internal impingement
- Trauma
 - Overhead athletes

Natural History

- Yamanaka et al (CORR, 1994)
 - 28% of PTRCTs progressed to Full-thickness at 1 yr
 - 80% progressed in size
- Denkers et al (AAOS Proceedings, 2012)
 - Mean of 4.4 years – serial MRI
 - 76% no progression of size
 - >50% tendon thickness – 55% tear progression
 - <50% tendon thickness – 14% tear progression
Natural History

- Healing is rare
 - Age-related degenerative change
- Non-anatomic procedures
 - Do not address the PTRCT
 - Ie. Subacromial decompression
 - Do not prevent tear progression

Classification

- Limitations
 - Coronal and sagittal plane dimensions
 - Tissue Quality
 - Acuity of tear
 - Variability of tendon thickness
 - 10-12mm

Non-surgical Treatment

- Effective in the right patient population
 - Elderly, Sedentary, Chronic, <50% thickness
- Not so effective in the wrong population
 - Young, Active, Acute, >50% thickness
- Throwing Athlete
 - Often accept up to 75% thickness
 - Limits in motion following repair
 - Address concomitant pathology
Surgical Treatment

• Indications
 – Failure of conservative treatment
 – Younger patient
 – Acute injury
 – >50% thickness without additional pathology

• Decision Making
 – Debridement +/- Acromioplasty
 – Repair

Debridement +/- Acromioplasty

– Ellman et al (CORR, 1990)
 • 50 pts, isolated SAD for PTRCT – 88% good to excellent results

– Kartus et al (Arthroscopy, 2006)
 • 33 pts, isolated SAD for PTRCT
 • Ultrasound at 2 years – 35% progressed to Full-thickness tears
 • Constant score 30 points less than C/L shoulder

– Cordasco et al (AJSM, 2002)
 • Isolated SAD
 • Excellent results PTRCTs <50 % thickness
 • Higher failure rate bursal-sided tears vs. articular-sided tears

Arthroscopic Repair

• Conversion Repair
• In Situ/ Transtendon Repair
• All intra-articular Repair
Arthroscopic Repair
• Conversion Repair
• In Situ/ Transtendon Repair
• All intra-articular Repair
Conversion Repair

- Complete the tear
- Removal of all diseased tissue
- Ease of fixation
- Kamath et al (JBJS, 2009)
 - 93% satisfaction rate
 - 88% repairs intact via U/S at 1 year
- Iyengar et al (Arthroscopy, 2011)
 - Significantly improved UCLA scores
 - 82% repairs intact via MRI at 2 years

Conversion Repair

- Articular vs. Bursal-sided PTRCTs
 - Kim SJ et al (AJSM, 2013)
 - 83 pts, min 2 yr f/u, MRI 6 months post-op
 - No difference clinical outcome
 - No difference retear rate (~10%)
 - Bursal group – higher rate acromial spur
 - Kim KC et al (AJSM 2014)
 - 43 pts, min 2 yr f/u, MRI 1 year post-op
 - No difference in UCLA, SST
 - Bursal-sided group greater improvement Constant score
 - Bursal-sided group 10% retear rate, articular-sided 0% (p<0.05)
In Situ Repair

In Situ Repair

- Advantages
 - Avoidance of detaching residual cuff from footprint
 - Maintains intact lateral cuff
 - Anatomic Reduction of cuff tissue
 - Maintains blood supply to cuff?

- Disadvantages
 - Technically challenging
 - No tuberosity bony preparation

In Situ Repair

- Trans-tendon repair technique
 - High graded articular-sided tears

- Clinical outcomes
 - >90% patient satisfaction rate
 - Castagna et al (AJSM, 2009)
 - 54 pts, Min 2 year f/u
 - 98% satisfaction rate, All outcomes improved
 - 41% residual pain during ABD and IR
 - Better outcomes:
 - less tendon retraction, a larger footprint exposure, of younger age, clinical history of trauma
In Situ Repair

• All Intra-articular “Intra-tendon” technique
 – Altchek et al (Arthroscopy, 2008)
 – Avoids overtensioning the bursal-sided fibers vs articular fibers
 – Articular-sided PTRCTs
 – Park MC et al (AJSM, 2009)
 • Similar biomechanical characteristics to two over-the-top mattress sutures

Conversion vs. In Situ

• Biomechanical Comparison
 – Gonzales-Lomas et al (JSES, 2008)
 • Transtendon Repair
 – Less gap formation
 – Higher ultimate failure load
 – Peters et al (Arthroscopy, 2010)
 • Transtendon Repair
 – Higher ultimate failure load

• Castagna et al (KSSA, 2015)
 – Level 2 Prospective, Min 2 year f/u
 – 74 pts
 – No sig difference improvement VAS, Constant
 – Conversion – Sig increased strength vs. TT

• Shin SJ (Arthroscopy 2012)
 – Level 2 Prospective, Mean 31 mo f/u
 – 48 pts
 – No significant difference ASES, Constant
 – Transtendon group significant higher pain in first 3 months post-op
 – 0% retear rate Transtendon group vs. 8% Conversion
Conversion vs. In Situ

- Franchesci et al (Int Orthop, 2013)
 - Level 2 Prospective Randomized Controlled Trial
 - 32 pts Transtendon, 28 Conversion
 - Mean 38 mo f/u, MRI at final f/u
 - No difference ASES, Constant score, ROM
 - No difference retear rate (~3%)

Conversion vs. In Situ

- Kim YS et al (Arthroscopy, 2015)
 - Level 2 Prospective Comparative
 - 100 pts (50/50) articular-sided and bursal-sided PTRCTs, minimum 1 year f/u
 - TOE suture-bridge in all cases
 - MRI at 6 and 12 mo
 - No difference clinical outcomes – ASES, Constant, SST
 - MRI
 - Retear rate: 4.3% Transtendon, 15.6% Conversion
 - All conversion retears were bursal-sided tears

Conversion vs. In Situ

 - Meta-analysis
 - In Situ vs. Conversion of articular-sided PTRCTs >50% thickness
Conversion vs. In Situ

- Meta-analysis (cont’d)
 - 323 patients – 99 Conversion, 124 transtendon
 - 9 studies, Mean Quality Index – 12.5 (Max 32)
 - No difference in ASES outcomes
 - Transtendon Retear Rate 4.3%
 - Conversion Retear rate – 11.3% (p<0.05)

Overhead Athlete

- Connor et al (AJSM, 2003)
 - MRI asymptomatic shoulders elite throwers
 - 40% partial or full-thickness RCT
 - None required any surgery at 5 yrs
- Debridement +/- SAD treatment of choice
 - Address concomitant pathology – labrum, capsule
 - Concern for stiffness, time off, altered motion

Overhead Athlete

- Payne LZ et al (AJSM, 1997)
 - Overhead athletes <40yo PTRCTs
 - Acute traumatic injuries
 - 86% satisfactory outcomes, 64% return to sport
 - Insidious onset of pain
 - 45% return to sport
- Reynolds SB (CORR, 2008)
 - 76% Elite pitchers return to throwing after debridement, 55% at same level
Conclusions

• Based on current evidence
 – PTTCTS <50% thickness
 • Do well with debridement +/- SAD
 – PTRCTS >50% thickness do better with repair
 • Articular-sided and Bursal-sided
 • Bursal-sided tears – higher retear rate
 – Conversion vs. In Situ Transtendon Repair
 • No difference in clinical outcomes
 • Slightly higher retear rate with Conversion repair
 – Avoid repair in the Overhead Athlete

Conclusions

• Heterogeneity in current studies
 – Patient age, activity level, hand dominance, occupation
 – Concomitant pathology – Biceps, Labrum, OA
 – Repair techniques
• Technique chosen
 – Surgeon comfort level
 – Anatomic reduction
 – Avoid overtension

Thank You